当前位置: X-MOL 学术Journal of Theoretical and Applied Mechanics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Insight into Rock Crack Propagation from Resistivity and Ultrasonic Wave Variation
Theoretical and Applied Fracture Mechanics ( IF 5.0 ) Pub Date : 2020-10-01 , DOI: 10.1016/j.tafmec.2020.102758
Peng Jia , Lei Li , Dong-qiao Liu , Xiao-shuai Wang , De-chao Wang

Abstract By using a combined real-time electrical resistivity measurement and ultrasonic wave testing method, the changes in the electrical resistivity and ultrasonic wave information during the crack initiation, propagation and coalescence process of saturated greensand stone under uniaxial loading were investigated, and a method to predict the location of the potential through cracks in the sandstone was proposed based on the anisotropic characteristics of the resistivity. The crack propagation characteristics of sandstone under different loading speeds were analysed from the macro and micro perspectives based on the change in the resistivity. The results showed that there exists a significant correlation between the resistivity change, crack propagation and rock coalescence. Corresponding to the crack initiation, propagation and coalescence processes, the change in resistivity experiences four stages: the stationary stage, descending stage, sudden drop stage and surging stage. The anisotropic change in the resistivity on different testing faces of the rock shows that the anisotropic characteristic contributes to the understanding of the location and orientation where the macro-cracks form in the rock. The increase in the loading rate promotes the local concentration and expansion of micro-cracks in the rock, which can be reflected by the change in the resistivity: the higher the loading rate is, the faster the resistivity descends. With the increase in the loading rate, the failure of the rock tends to be more violent with relatively fewer fractures.

中文翻译:

从电阻率和超声波变化洞察岩石裂缝的传播

摘要 采用实时电阻率测量和超声波检测相结合的方法,研究了单轴加载下饱和湿砂岩裂纹萌生、扩展和聚结过程中电阻率和超声波信息的变化,并提出了一种检测方法。基于电阻率的各向异性特征,提出了通过砂岩裂缝预测电位的位置。基于电阻率的变化,从宏观和微观角度分析了不同加载速度下砂岩的裂纹扩展特性。结果表明,电阻率变化、裂纹扩展和岩石聚结之间存在显着的相关性。对应裂纹萌生,在传播和聚结过程中,电阻率的变化经历了四个阶段:平稳阶段、下降阶段、骤降阶段和涌动阶段。岩石不同测试面电阻率的各向异性变化表明,各向异性特征有助于了解岩石中宏观裂缝形成的位置和方向。加载速率的增加促进了岩石中微裂纹的局部集中和扩展,这可以通过电阻率的变化来体现:加载速率越高,电阻率下降越快。随着加载速率的增加,岩石的破坏往往更加剧烈,裂缝相对较少。突降阶段和暴涨阶段。岩石不同测试面电阻率的各向异性变化表明,各向异性特征有助于了解岩石中宏观裂缝形成的位置和方向。加载速率的增加促进了岩石中微裂纹的局部集中和扩展,这可以通过电阻率的变化来体现:加载速率越高,电阻率下降越快。随着加载速率的增加,岩石的破坏往往更加剧烈,裂缝相对较少。突降阶段和暴涨阶段。岩石不同测试面电阻率的各向异性变化表明,各向异性特征有助于了解岩石中宏观裂缝形成的位置和方向。加载速率的增加促进了岩石中微裂纹的局部集中和扩展,这可以通过电阻率的变化来体现:加载速率越高,电阻率下降越快。随着加载速率的增加,岩石的破坏往往更加剧烈,裂缝相对较少。岩石不同测试面电阻率的各向异性变化表明,各向异性特征有助于了解岩石中宏观裂缝形成的位置和方向。加载速率的增加促进了岩石中微裂纹的局部集中和扩展,这可以通过电阻率的变化来体现:加载速率越高,电阻率下降越快。随着加载速率的增加,岩石的破坏往往更加剧烈,裂缝相对较少。岩石不同测试面电阻率的各向异性变化表明,各向异性特征有助于了解岩石中宏观裂缝形成的位置和方向。加载速率的增加促进了岩石中微裂纹的局部集中和扩展,这可以通过电阻率的变化来体现:加载速率越高,电阻率下降越快。随着加载速率的增加,岩石的破坏往往更加剧烈,裂缝相对较少。
更新日期:2020-10-01
down
wechat
bug