当前位置: X-MOL 学术J. Comput. Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive coded aperture design for compressive computed tomography
Journal of Computational and Applied Mathematics ( IF 2.1 ) Pub Date : 2020-09-01 , DOI: 10.1016/j.cam.2020.113174
Andrés Jerez , Miguel Márquez , Henry Arguello

Computed tomography (CT) is a non-invasive scanning technique that allows the visualization of the internal structure of an object from X-ray projections. These projections are frequently affected by different artifacts, including the beam hardening (BH) effect, among others. The BH effect is produced by high X-ray attenuation due to dense elements inside the object of interest. Traditionally, BH artifacts are addressed by applying oversampling techniques. However, the prolonged X-ray exposition represents a risk to the patient’s health. To overcome this drawback, undersampling CT approaches have been developed, e.g., the coded aperture computed tomography (CA-CT) which is based on the compressive sensing (CS) theory. Nevertheless, CA-CT has not been extended for addressing the BH effect. This work proposes an adaptive coded aperture sensing methodology based on a fan-beam X-ray architecture to reduce the BH artifacts. The proposed methodology uses an initial sampling to identify high-density elements and an adaptive sampling to avoid the acquisition of those dense elements. Specifically, the proposed method is summarized into three main steps: (i) sensing matrix analysis via Gershgorin theorem; (ii) coded aperture optimization criteria based on view angles, pixels of the object, and dense elements; (iii) coded aperture optimization algorithm through the sensing matrix analysis and the proposed optimization criteria. Simulation results show that the reconstructed images by the proposed adaptive methodology gain up to 12[dB] in averaged peak signal-to-noise ratio (PSNR) compared to the traditional CA-CT approach which implements non-designed coded apertures.



中文翻译:

自适应编码孔径设计用于压缩计算机断层扫描

计算机断层扫描(CT)是一种非侵入性扫描技术,可通过X射线投影可视化对象的内部结构。这些投影经常受不同伪影的影响,其中包括射束硬化(BH)效应等。BH效应是由于感兴趣的对象内部的密集元素导致的高X射线衰减而产生的。传统上,BH伪影通过应用过采样技术来解决。但是,长时间的X射线暴露会对患者的健康构成威胁。为了克服该缺点,已经开发了欠采样CT方法,例如基于压缩感测(CS)理论的编码孔径计算机断层摄影(CA-CT)。然而,CA-CT尚未扩展用于解决BH效应。这项工作提出了一种基于扇形X射线架构的自适应编码孔径传感方法,以减少BH伪影。所提出的方法使用初始采样来识别高密度元素,并使用自适应采样来避免获取那些密集元素。具体而言,所提出的方法概括为三个主要步骤:(i)通过Gershgorin定理检测矩阵;(ii)基于视角,物体像素和密集元素的编码光圈优化标准;(iii)通过感测矩阵分析和提出的优化标准来编码孔径优化算法。仿真结果表明,所提出的自适应方法所重建的图像的增益达到最大值。所提出的方法使用初始采样来识别高密度元素,并使用自适应采样来避免获取那些密集元素。具体而言,所提出的方法概括为三个主要步骤:(i)通过Gershgorin定理检测矩阵;(ii)基于视角,物体像素和密集元素的编码光圈优化标准;(iii)通过感测矩阵分析和提出的优化标准来编码孔径优化算法。仿真结果表明,所提出的自适应方法所重建的图像的增益达到最大值。所提出的方法使用初始采样来识别高密度元素,并使用自适应采样来避免获取那些密集元素。具体而言,所提出的方法概括为三个主要步骤:(i)通过Gershgorin定理检测矩阵;(ii)基于视角,物体像素和密集元素的编码光圈优化标准;(iii)通过感测矩阵分析和提出的优化标准来编码孔径优化算法。仿真结果表明,所提出的自适应方法所重建的图像的增益达到最大值。(ii)基于视角,物体像素和密集元素的编码光圈优化标准;(iii)通过感测矩阵分析和提出的优化标准来编码孔径优化算法。仿真结果表明,所提出的自适应方法所重建的图像的增益达到最大值。(ii)基于视角,物体像素和密集元素的编码光圈优化标准;(iii)通过感测矩阵分析和提出的优化标准来编码孔径优化算法。仿真结果表明,所提出的自适应方法所重建的图像的增益达到最大值。12[D b] 与采用非设计编码孔径的传统CA-CT方法相比,平均峰值信噪比(PSNR)有所降低。

更新日期:2020-09-01
down
wechat
bug