当前位置: X-MOL 学术Int. J. Extrem. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications
International Journal of Extreme Manufacturing ( IF 16.1 ) Pub Date : 2020-07-22 , DOI: 10.1088/2631-7990/ab95f6
Yiyuan Zhang 1 , Yunlong Jiao 1, 2 , Chuanzong Li 3 , Chao Chen 1 , Jiawen Li 1 , Yanlei Hu 1 , Dong Wu 1 , Jiaru Chu 1
Affiliation  

Femtosecond laser direct writing (FLDW) has been widely employed in controllable manufacturing of biomimetic micro/nanostructures due to its specific advantages including high precision, simplicity, and compatibility for diverse materials in comparison with other methods (e.g. ion etching, sol-gel process, chemical vapor deposition, template method, and self-assembly). These biomimetic micro/nanostructured surfaces are of significant interest for academic and industrial research due to their wide range of potential applications, including self-cleaning surfaces, oil-water separation, and fog collection. This review presents the inherent relationship between natural organisms, fabrication methods, micro/nanostructures and their potential applications. Thereafter, we throw a list of current fabrication strategies so as to highlight the advantages of FLDW in manufacturing bioinspired microstructured surfaces. Subsequently, we summarize a variety of typical bioinspired designs (e.g. lotus leaf, pitcher plant, rice leaf, butterfly wings, etc) for diverse multifunctional micro/nanostructures through extreme femtosecond laser processing technology. Based on the principle of interfacial chemistry and geometrical optics, we discuss the potential applications of these functional micro/nanostructures and assess the underlying challenges and opportunities in the extreme fabrication of bioinspired micro/nanostructures by FLDW. This review concludes with a follow up and an outlook of femtosecond laser processing in biomimetic domains.



中文翻译:

飞秒激光直接写入制备的具有生物启发性的微/纳米结构表面,可用于多功能应用

飞秒激光直接写入(FLDW)由于其独特的优势包括与其他方法(例如离子蚀刻,溶胶-凝胶工艺,化学气相沉积,模板方法和自组装)。这些仿生微/纳米结构表面由于其广泛的潜在应用领域,包括自清洁表面,油水分离和烟雾收集,引起了学术和工业研究的极大兴趣。这篇综述介绍了天然生物,制造方法,微观/纳米结构及其潜在应用之间的内在联系。之后,我们列出了当前的制造策略,以突出FLDW在制造生物启发性微结构表面方面的优势。随后,我们总结了通过极限飞秒激光加工技术针对各种多功能微/纳米结构的各种典型的生物灵感设计(例如荷叶,捕虫草,稻叶,蝴蝶翅膀等)。基于界面化学和几何光学原理,我们讨论了这些功能性微/纳米结构的潜在应用,并评估了FLDW极端制造生物启发性微/纳米结构的潜在挑战和机遇。这篇综述以仿生领域中的飞秒激光加工技术为重点,进行了后续研究。我们总结了通过极限飞秒激光加工技术针对各种多功能微/纳米结构的各种典型的生物灵感设计(例如荷叶,捕虫草,稻叶,蝴蝶翅膀等)。基于界面化学和几何光学原理,我们讨论了这些功能性微/纳米结构的潜在应用,并评估了FLDW极端制造生物启发性微/纳米结构的潜在挑战和机遇。这篇综述以仿生领域中的飞秒激光加工技术为重点,进行了后续研究。我们总结了通过极限飞秒激光加工技术针对各种多功能微/纳米结构的各种典型的生物灵感设计(例如荷叶,捕虫草,稻叶,蝴蝶翅膀等)。基于界面化学和几何光学原理,我们讨论了这些功能性微/纳米结构的潜在应用,并评估了FLDW极端制造生物启发性微/纳米结构的潜在挑战和机遇。这篇综述以仿生领域中的飞秒激光加工技术为重点,进行了后续研究。基于界面化学和几何光学原理,我们讨论了这些功能性微/纳米结构的潜在应用,并评估了FLDW极端制造生物启发性微/纳米结构的潜在挑战和机遇。这篇综述以仿生领域中的飞秒激光加工技术为重点,进行了后续研究。基于界面化学和几何光学原理,我们讨论了这些功能性微/纳米结构的潜在应用,并评估了FLDW极端制造生物启发性微/纳米结构的潜在挑战和机遇。这篇综述以仿生领域中的飞秒激光加工技术为重点,进行了后续研究。

更新日期:2020-07-22
down
wechat
bug