当前位置: X-MOL 学术APL Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis
APL Materials ( IF 5.3 ) Pub Date : 2020-08-01 , DOI: 10.1063/5.0013159
Kate M. Adkison 1 , Shun-Li Shang 1 , Brandon J. Bocklund 1 , Detlef Klimm 2 , Darrell G. Schlom 2, 3, 4 , Zi-Kui Liu 1
Affiliation  

We have conducted a comprehensive thermodynamic analysis of the volatility of 128 binary oxides to evaluate their suitability as source materials for oxide molecular-beam epitaxy (MBE). 16 solid or liquid oxides are identified that evaporate nearly congruently from stable oxide sources to gas species: As2O3, B2O3, BaO, MoO3, OsO4, P2O5, PbO, PuO2, Rb2O, Re2O7, Sb2O3, SeO2, SnO, ThO2, Tl2O, and WO3. An additional 24 oxides could provide molecular beams with dominant gas species of CeO, Cs2O, DyO, ErO, Ga2O, GdO, GeO, HfO, HoO, In2O, LaO, LuO, NdO, PmO, PrO, PuO, ScO, SiO, SmO, TbO, Te2O2, U2O6, VO2, and YO2. The present findings are in close accord with available experimental results in the literature. For example, As2O3, B2O3, BaO, MoO3, PbO, Sb2O3, and WO3 are the only oxides in the ideal category that have been used in MBE. The remaining oxides deemed ideal for MBE awaiting experimental verification. We also consider two-phase mixtures as a route to achieve the desired congruent evaporation characteristic of an ideal MBE source. These include (Ga2O3 + Ga) to produce a molecular beam of Ga2O(g), (GeO2 + Ge) to produce GeO(g), (SiO2 + Si) to produce SiO(g), (SnO2 + Sn) to produce SnO(g), etc.; these suboxide sources enable suboxide MBE. Our analysis provides the vapor pressures of the gas species over the condensed phases of 128 binary oxides, which may be either solid or liquid depending on the melting temperature.

中文翻译:

二元氧化物对分子束外延源材料的适用性:综合热力学分析

我们对 128 种二元氧化物的挥发性进行了全面的热力学分析,以评估它们作为氧化物分子束外延 (MBE) 源材料的适用性。确定了 16 种固体或液体氧化物,它们几乎一致地从稳定的氧化物源蒸发为气体种类:As2O3、B2O3、BaO、MoO3、OsO4、P2O5、PbO、PuO2、Rb2O、Re2O7、Sb2O3、SeO2、SnO、ThO2、Tl2O 和WO3。另外 24 种氧化物可以提供具有主要气体种类的分子束:CeO、Cs2O、DyO、ErO、Ga2O、GdO、GeO、HfO、HoO、In2O、LaO、LuO、NdO、PmO、PrO、PuO、ScO、SiO、SmO 、TbO、Te2O2、U2O6、VO2 和 YO2。目前的发现与文献中可用的实验结果非常一致。例如,As2O3、B2O3、BaO、MoO3、PbO、Sb2O3 和 WO3 是理想类别中唯一用于 MBE 的氧化物。剩余的氧化物被认为是 MBE 的理想选择,等待实验验证。我们还考虑将两相混合物作为实现理想 MBE 源所需的一致蒸发特性的途径。这些包括 (Ga2O3 + Ga) 产生 Ga2O(g) 分子束,(GeO2 + Ge) 产生 GeO(g),(SiO2 + Si) 产生 SiO(g),(SnO2 + Sn) 产生 SnO (g) 等;这些低氧化物源使低氧化物 MBE 成为可能。我们的分析提供了气体物质在 128 种二元氧化物凝聚相上的蒸气压,这些氧化物可以是固体也可以是液体,具体取决于熔化温度。(GeO2 + Ge)产生GeO(g),(SiO2 + Si)产生SiO(g),(SnO2 + Sn)产生SnO(g)等;这些低氧化物源可实现低氧化物 MBE。我们的分析提供了气体物质在 128 种二元氧化物凝聚相上的蒸气压,这些氧化物可以是固体也可以是液体,具体取决于熔化温度。(GeO2 + Ge)产生GeO(g),(SiO2 + Si)产生SiO(g),(SnO2 + Sn)产生SnO(g)等;这些低氧化物源可实现低氧化物 MBE。我们的分析提供了气体物质在 128 种二元氧化物凝聚相上的蒸气压,这些氧化物可以是固体也可以是液体,具体取决于熔化温度。
更新日期:2020-08-01
down
wechat
bug