当前位置: X-MOL 学术Phys. fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrokinetic membrane pumping flow model in a microchannel
Physics of Fluids ( IF 4.6 ) Pub Date : 2020-08-01 , DOI: 10.1063/5.0015451
Dharmendra Tripathi 1 , V. K. Narla 2 , Yasser Aboelkassem 3
Affiliation  

A microfluidic pumping flow model driven by electro-osmosis mechanisms is developed to analyze the flow characteristics of aqueous electrolytes. The pumping model is designed based on a single propagative rhythmic membrane contraction applied on the upper wall of a microchannel. The flow lubrication theory coupled with a nonlinear Poisson–Boltzmann equation is used to model the microchannel unsteady creeping flow and to describe the distribution of the electric potential across the electric double layer. A generic solution is obtained for the Poisson–Boltzmann equation without the Debye–Huckel linearization. The effects of zeta potential, Debye length, and electric field on the potential distribution, pressure distribution, velocity profiles, shear stress, and net flow rate are computed and interpreted in detail. The results have shown that this electrokinetic membrane pumping model can be used to understand microlevel transport phenomena in various physiological systems. The proposed model can also be integrated with other microfluidic devices for moving microvolume of liquids in artificial capillaries used in modern biomedical applications.

中文翻译:

微通道中的电动膜泵流模型

开发了由电渗透机制驱动的微流体泵流模型来分析水性电解质的流动特性。泵模型是基于施加在微通道上壁的单个传播节律性膜收缩而设计的。流动润滑理论与非线性 Poisson-Boltzmann 方程相结合,用于模拟微通道非定常蠕动流并描述双电层上的电位分布。无需 Debye-Huckel 线性化即可获得 Poisson-Boltzmann 方程的通用解。zeta 电位、德拜长度和电场对电位分布、压力分布、速度分布、剪切应力和净流速的影响进行了详细计算和解释。结果表明,这种电动膜泵模型可用于理解各种生理系统中的微观传输现象。所提出的模型还可以与其他微流体设备集成,用于在现代生物医学应用中使用的人造毛细血管中移动微量的液体。
更新日期:2020-08-01
down
wechat
bug