当前位置: X-MOL 学术Phys. fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental and analytical investigation of meso-scale slug bubble dynamics in a square capillary channel
Physics of Fluids ( IF 4.1 ) Pub Date : 2020-08-01 , DOI: 10.1063/5.0016241
Reza Azadi 1 , Jaime Wong 1 , David. S. Nobes 1
Affiliation  

The flow of dispersed gas bubbles in a viscous liquid can create a bubbly, slug bubble, or elongated bubble flow regime. A slug bubble flow, characterized by bubble sizes equal to the hydraulic diameter of the channel, is a transition regime with a complex local flow field that has received little attention in the past. In this study, dynamics of this flow regime in a square capillary with a cross-sectional area of 3 × 3 mm2 was studied analytically and experimentally. The main geometric parameters of the flow field, such as film and corner thicknesses and volume fraction, were calculated for different flow conditions based on a semi-empirical approach. Using velocity fields from particle image velocimetry (PIV), combined with the analytical equations derived, local mean variations of the film and corner flow thicknesses and velocity were analyzed in detail. Analysis of the results reveals a linear relation between the bubble speed and the liquid slug velocity that was obtained using sum-of-correlation PIV. Local backflow, where the liquid locally flows in the reverse direction, was demonstrated to occur in the slug bubble flow, and the theoretical analysis showed that it can be characterized based on the bubble cross-sectional area and ratio of the liquid slug and bubble speed. The backflow phenomenon is only contributed to the channel corners, where the speed of liquid can increase to the bubble speed. However, there is no evidence of reverse flow in the liquid film for the flow conditions analyzed in this study.

中文翻译:

方形毛细管通道中尺度段塞气泡动力学的实验与分析研究

粘性液体中分散的气泡流动可产生气泡、段塞气泡或细长气泡流态。段塞气泡流的特点是气泡大小等于通道的水力直径,是一种具有复杂局部流场的过渡状态,过去很少受到关注。在这项研究中,通过分析和实验研究了横截面积为 3 × 3 mm2 的方毛细管中这种流动状态的动力学。基于半经验方法计算了不同流动条件下流场的主要几何参数,例如薄膜和角厚度和体积分数。使用来自粒子图像测速 (PIV) 的速度场,结合推导出的解析方程,详细分析了薄膜和角流厚度和速度的局部平均变化。结果的分析揭示了气泡速度与使用相关性总和 PIV 获得的液体段塞速度之间的线性关系。局部回流,即液体局部反向流动,被证明发生在段塞气泡流中,理论分析表明可以根据气泡截面积和液段与气泡速度的比值来表征. 回流现象只对通道拐角有贡献,在那里液体的速度可以增加到气泡速度。然而,对于本研究中分析的流动条件,没有证据表明液膜中存在反向流动。结果的分析揭示了气泡速度与使用相关性总和 PIV 获得的液体段塞速度之间的线性关系。局部回流,即液体局部反向流动,被证明发生在段塞气泡流中,理论分析表明可以根据气泡截面积和液段与气泡速度的比值来表征. 回流现象只对通道拐角有贡献,在那里液体的速度可以增加到气泡速度。然而,对于本研究中分析的流动条件,没有证据表明液膜中存在反向流动。结果的分析揭示了气泡速度与使用相关性总和 PIV 获得的液体段塞速度之间的线性关系。局部回流,即液体局部反向流动,被证明发生在段塞气泡流中,理论分析表明可以根据气泡截面积和液段与气泡速度的比值来表征. 回流现象只对通道拐角有贡献,在那里液体的速度可以增加到气泡速度。然而,对于本研究中分析的流动条件,没有证据表明液膜中存在反向流动。证明了在段塞气泡流中发生了这种情况,理论分析表明,可以根据气泡截面积和液段塞与气泡速度的比值来表征。回流现象仅在通道拐角处起作用,在那里液体的速度可以增加到气泡速度。然而,对于本研究中分析的流动条件,没有证据表明液膜中存在反向流动。证明了在段塞气泡流中发生了这种情况,理论分析表明,可以根据气泡截面积和液段塞与气泡速度的比值来表征。回流现象只对通道拐角有贡献,在那里液体的速度可以增加到气泡速度。然而,对于本研究中分析的流动条件,没有证据表明液膜中存在反向流动。
更新日期:2020-08-01
down
wechat
bug