当前位置: X-MOL 学术J. Renew. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluating the WFIP2 updates to the HRRR model using scanning Doppler lidar measurements in the complex terrain of the Columbia River Basin
Journal of Renewable and Sustainable Energy ( IF 1.9 ) Pub Date : 2020-07-01 , DOI: 10.1063/5.0009138
Yelena L. Pichugina 1, 2 , Robert M. Banta 1, 2 , W. Alan Brewer 2 , L. Bianco 1, 3 , C. Draxl 4 , J. Kenyon 1, 5 , J. K. Lundquist 6, 7 , J. B. Olson 1 , D. D. Turner 5 , S. Wharton 8 , J. Wilczak 3 , S. Baidar 1, 2 , L. K. Berg 4 , H. J. S. Fernando 9 , B. J. McCarty 1, 2 , R. Rai 4 , B. Roberts 6 , J. Sharp 10 , W. J. Shaw 4 , M. T. Stoelinga 11 , R. Worsnop 7
Affiliation  

The wind-energy (WE) industry relies on numerical weather prediction (NWP) forecast models as foundational or base models for many purposes, including wind-resource assessment and wind-power forecasting. During the Second Wind Forecast Improvement Project (WFIP2) in the Columbia River Basin of Oregon and Washington, a significant effort was made to improve NWP forecasts through focused model development, to include experimental refinements to the High Resolution Rapid Refresh (HRRR) model physics and horizontal grid spacing. In this study, the performance of an experimental version of HRRR that includes these refinements is tested against a control version, which corresponds to that of the operational HRRR run by National Oceanic and Atmospheric Administration/National Centers for Environmental Protection at the outset of WFIP2. The effects of horizontal grid resolution were also tested by comparing wind forecasts from the HRRR (with 3-km grid spacing) with those from a finer-resolution HRRR nest with 750-m grid spacing. Model forecasts are validated against accurate wind-profile measurements by three scanning, pulsed Doppler lidars at sites separated by a total distance of 71 km. Model skill and improvements in model skill, attributable to physics refinements and improved horizontal grid resolution, varied by season, by site, and during periods of atmospheric phenomena relevant to WE. In general, model errors were the largest below 150 m above ground level (AGL). Experimental HRRR refinements tended to reduce the mean absolute error (MAE) and other error metrics for many conditions, but degradation in skill (increased MAE) was noted below 150 m AGL at the two lowest-elevation sites at night. Finer resolution was found to produce the most significant reductions in the error metrics.

中文翻译:

在哥伦比亚河流域的复杂地形中使用扫描多普勒激光雷达测量评估 HRRR 模型的 WFIP2 更新

风能 (WE) 行业依赖数值天气预报 (NWP) 预测模型作为基础或基础模型,用于多种用途,包括风资源评估和风功率预测。在俄勒冈州和华盛顿哥伦比亚河流域的第二次风力预报改进项目 (WFIP2) 期间,通过集中模型开发,包括对高分辨率快速刷新 (HRRR) 模型物理和水平网格间距。在这项研究中,包含这些改进的 HRRR 实验版本的性能与对照版本进行了测试,该版本与国家海洋和大气管理局/国家环境保护中心在 WFIP2 开始时运行的业务 HRRR 的性能相对应。水平网格分辨率的影响也通过比较来自 HRRR(网格间距为 3 公里)的风预测与来自具有 750 米网格间距的更高分辨率 HRRR 巢的风预测进行了测试。模型预测通过三个扫描脉冲多普勒激光雷达在相距 71 公里的总距离处根据准确的风廓线测量值进行验证。模型技能和模型技能的改进,归因于物理改进和水平网格分辨率的提高,因季节、地点和与 WE 相关的大气现象期间而异。一般来说,模型误差在地面以上 150 m 以下 (AGL) 最大。实验性 HRRR 改进倾向于减少许多条件下的平均绝对误差 (MAE) 和其他误差指标,但在夜间海拔低于 150 m 的两个最低海拔地点注意到技能下降(MAE 增加)。发现更精细的分辨率可以最大程度地减少误差指标。
更新日期:2020-07-01
down
wechat
bug