当前位置: X-MOL 学术Batteries Supercaps › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nickel Metaphosphate as a Conversion Positive Electrode for Lithium‐Ion Batteries
Batteries & Supercaps ( IF 5.7 ) Pub Date : 2020-08-31 , DOI: 10.1002/batt.202000164
Qingbo Xia 1, 2 , Maxim Avdeev 1, 2 , Siegbert Schmid 1 , Hongwei Liu 3 , Bernt Johannessen 4 , Chris D. Ling 1
Affiliation  

Lithium storage schemes based on conversion chemistry have been used in a large variety of negative electrodes achieving capacities 2–3 times higher than graphite. However, to date, relatively few positive electrode examples have been reported. Here, we report a new conversion positive electrode, Ni(PO3)2, and systematic studies on its working and degradation mechanisms. Crystalline Ni(PO3)2 undergoes an electrochemistry‐driven amorphization process in the first discharge to form a fine microstructure, consisting of Ni domains ∼2 nm wide that form a percolating electron‐conducting network, embedded in a glassy LiPO3 matrix. P does not participate electrochemically, remaining as P5+ in [PO3] throughout. The electrode does not recrystallise in the following first charge process, remaining amorphous over all subsequent cycles. The low ionicity of the Ni−[PO3] bond and the high Li+ conductivity of the LiPO3 glass lead to high intrinsic electrochemical activity, allowing the micro‐sized Ni(PO3)2 to achieve its theoretical capacity of 247 mAh/g. The performance of the Ni(PO3)2 electrode ultimately degrades due to the growth of larger and more isolated Ni grains. While the theoretical capacity of Ni(PO3)2 is itself limited, this study sheds new light on the underlying chemical mechanisms of conversion positive electrodes, an important new class of electrode for solid‐state batteries.

中文翻译:

偏磷酸镍作为锂离子电池的转换正极

基于转换化学的锂存储方案已用于各种负极,其容量是石墨的2-3倍。然而,迄今为止,已经报道了相对较少的正极示例。在这里,我们报告一个新的转换正极Ni(PO 32,并对其工作和降解机理进行系统研究。Ni(PO 32晶体在第一次放电中经历了电化学驱动的非晶化过程,形成了一个精细的微结构,该微结构由约2 nm宽的Ni域组成,形成渗透的电子传导网络,嵌入到玻璃状LiPO 3基质中。P不参与电化学作用,保留为P 5+在[PO 3 ] -中。电极在随后的第一个充电过程中不会重结晶,在所有后续循环中保持非晶态。Ni- [PO 3 ]键的低离子性和LiPO 3玻璃的高Li +电导率导致高固有的电化学活性,使微型Ni(PO 32达到其理论容量247 mAh / G。Ni(PO 32电极的性能最终由于较大且更孤立的Ni晶粒的生长而降低。Ni(PO 32的理论容量 由于它本身是有限的,这项研究为转化型正极的潜在化学机理提供了新的思路,这是固态电池的重要一类新的电极。
更新日期:2020-08-31
down
wechat
bug