当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Study and Experimental Validation of Blastworthy Structure using Aluminum Foam Sandwich Subjected to Fragmented 8 kg TNT Blast Loading
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.ijimpeng.2020.103699
Arief N. Pratomo , Sigit P. Santosa , Leonardo Gunawan , Djarot Widagdo , Ichsan S. Putra

Abstract A blastworthy structure is defined as a structure that has the ability to deform with a controlled force and preserve sufficient residual space around the occupants to limit bodily injury during a blast impact incident. In this research, a blastworthy aluminum foam sandwich (AFS) structure that consisted of an occupant side plate (OSP), a struck side plate (SSP), and an aluminum foam (Al-foam) core were numerically and experimentally subjected to blast-fragmented loading. The explosion with high-pressure shock waves was produced by steel-covered TNT, creating a synergistic blast and fragment loading. The interaction between the blast-fragment loading and the AFS created a unique perforation pattern due to Monroe's effect. The measured blastworthiness characteristics included structural integrity, acceleration, and reaction force. A numerical modeling strategy to analyze the blastworthiness performance of the AFS structure was developed to capture the dynamic responses and the damage mechanism. Two types of blast loading, namely load blast enhanced (LBE) and smooth particle hydrodynamic (SPH) blast loading, were utilized along with the Cockcroft-Latham damage modeling on the AFS. A blast experimental setup with a fix-clamped method was used to evaluate the blastworthy characteristics of the panel to acquire the central acceleration and reaction force histories. A two-step process of experimental validation was carried out. First, a pre-test system validation with a very low explosive blast using 60 gram of TNT was conducted on the sandwich specimen to ensure the data acquisition system's functionality and to obtain comparable data for system validation. Second, a blast impact test using 8 kg of steel-covered TNT was carried out to validate the numerical modeling results. The results of the numerical analysis showed that the LBE model had good agreement with the test data for the small deformation blast impact loading with 60 gram TNT. For the large deformation blast impact loading with 8 kg TNT, the SPH models provided excellent agreement with the damage mode and dynamic responses, where the acceleration and the reaction force performances were both within 6.1% and 6.4% of the experimental validation, respectively. As for the structural performance of the AFS construction, it was observed that the sandwich panel met the structural integrity requirements. There were no cracks or fractures in the OSP. The SSP and Al-foam absorbed more than 98.3% of the blast impact energy, providing extra protection for the OSP. This research contributes to the dynamic structural-response and damage investigation of AFS subjected to fragmented 8 kg TNT blast loading.

中文翻译:

泡沫铝夹层防爆结构的数值研究和实验验证在 8 公斤 TNT 爆破荷载作用下

摘要 防爆结构被定义为能够在受控力下变形并在居住者周围保留足够剩余空间以在爆炸冲击事件中限制身体伤害的结构。在这项研究中,由乘员侧板 (OSP)、撞击侧板 (SSP) 和泡沫铝 (Al-foam) 芯组成的防爆泡沫铝夹层 (AFS) 结构进行了数值和实验的爆炸试验。碎片化加载。带有高压冲击波的爆炸是由钢覆盖的 TNT 产生的,产生协同爆炸和碎片加载。由于门罗效应,爆炸碎片加载和 AFS 之间的相互作用产生了独特的穿孔模式。测得的防爆特性包括结构完整性、加速度和反作用力。开发了一种用于分析 AFS 结构爆炸性能的数值建模策略,以捕获动态响应和损坏机制。两种类型的爆炸载荷,即载荷爆炸增强 (LBE) 和光滑粒子流体动力学 (SPH) 爆炸载荷,与 AFS 上的 Cockcroft-Latham 损伤模型一起使用。使用固定夹紧方法的爆炸实验装置来评估面板的爆炸特性,以获得中心加速度和反作用力历史。进行了两步实验验证过程。首先,使用 60 克 TNT 的极低爆炸爆炸对夹层样品进行了预测试系统验证,以确保数据采集系统的功能并获得用于系统验证的可比数据。第二,使用 8 公斤钢包覆 TNT 进行了爆炸冲击试验,以验证数值模拟结果。数值分析结果表明,LBE 模型与 60 克 TNT 小变形爆炸冲击载荷试验数据吻合较好。对于 8 kg TNT 的大变形爆炸冲击载荷,SPH 模型与损坏模式和动态响应非常吻合,其中加速度和反作用力性能分别在实验验证的 6.1% 和 6.4% 以内。至于 AFS 结构的结构性能,据观察夹芯板满足结构完整性要求。OSP 中没有裂缝或断裂。SSP 和泡沫铝吸收了 98.3% 以上的爆炸冲击能量,为 OSP 提供额外保护。这项研究有助于 AFS 在 8 公斤 TNT 爆炸载荷下的动态结构响应和损伤研究。
更新日期:2020-12-01
down
wechat
bug