当前位置: X-MOL 学术Integr. Mater. Manuf. Innov. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ICME Framework for Simulation of Microstructure and Property Evolution During Gas Metal Arc Welding in DP980 Steel
Integrating Materials and Manufacturing Innovation ( IF 2.4 ) Pub Date : 2020-08-31 , DOI: 10.1007/s40192-020-00182-4
M. J. Deepu , G. Phanikumar

An integrated computational materials engineering (ICME)-based workflow was adopted for the study of microstructure and property evolution at the heat-affected zone (HAZ) of gas metal arc-welded DP980 steel. The macroscale simulation of the welding process was performed with finite element method (FEM) implemented in Simufact Welding® software and was experimentally validated. The time–temperature profile at HAZ obtained from FEM simulation was physically simulated using Gleeble 3800® thermo-mechanical simulator with a dilatometer attachment. The resulting phase transformations and microstructure were studied experimentally. The austenite-to-ferrite and austenite-to-bainite transformations during cooling at HAZ were simulated using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation implemented in JMatPro® software and with phase-field modeling implemented in Micress® software. The phase fractions and the phase transformation kinetics simulated by phase-field method agreed well with experiments. A single scaling factor introduced in JMatPro® software minimized the deviation between calculations and experiments. Asymptotic homogenization implemented in Homat® software was used to calculate the effective macroscale thermo-elastic properties from the phase-field simulated microstructure. FEM-based virtual uniaxial tensile test with Abaqus® software was used to calculate the effective macroscale flow curves from the phase-field simulated microstructure. The flow curve from virtual test simulation showed good agreement with the flow curve obtained with tensile test in Gleeble®. An ICME-based vertical integration workflow in two stages is proposed. With this ICME workflow, effective properties at the macroscale could be obtained by taking microstructure morphology and orientation into consideration.



中文翻译:

ICME框架,用于模拟DP980钢中气体保护金属电弧焊过程中的组织和性能演变

采用基于集成计算材料工程(ICME)的工作流程来研究气体金属电弧焊DP980钢的热影响区(HAZ)的组织和性能演变。用在Simufact焊接执行的有限元法(FEM)进行的焊接过程的宏观仿真®软件和进行了实验验证。在HAZ从FEM仿真所获得的时间-温度分布使用GLEEBLE 3800被物理地模拟®带有膨胀计附件的热机械模拟器。实验研究了所得的相变和微观结构。在HAZ在冷却过程中奥氏体向铁素体和奥氏体-贝氏体转化都使用JMatPro实现的约翰逊Mehl的-阿夫拉米-洛夫(JMAK)方程模拟®软件,并与相场中Micress建模设计实现®软件。通过相场法模拟得到的相分数和相变动力学与实验吻合良好。在JMatPro引入的单个缩放因子®软件最小化计算和实验之间的偏差。渐近同质化Homat实现®用软件从相场模拟的微观结构计算有效的宏观热弹性性质。与Abaqus的基于FEM的虚拟单轴拉伸试验®软件用于计算从相场模拟组织中的有效宏观流动曲线。从虚拟测试模拟的流动曲线显示与在GLEEBLE拉伸试验得到的流动曲线吻合®。提出了一个基于ICME的垂直集成工作流程,分为两个阶段。通过此ICME工作流程,可以通过考虑微观结构的形态和方向来获得宏观尺度上的有效特性。

更新日期:2020-08-31
down
wechat
bug