当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor
Energy Storage Materials ( IF 18.9 ) Pub Date : 2020-08-30 , DOI: 10.1016/j.ensm.2020.08.017
Penghui Chen , Weiya Zhou , Zhuojian Xiao , Shaoqing Li , Huiliang Chen , Yanchun Wang , Zibo Wang , Wei Xi , Xiaogang Xia , Sishen Xie

Lithium ion capacitors (LICs) are deemed to be an ideal complement between lithium-ion batteries and supercapacitors. However, the sluggish kinetics that leads to a poor rate capability of Faradaic insertion anodes remains a handicap. Herein, a self-supported architecture is designed by combining an interconnected graphene scroll (GS) framework with in situ formed well-distributed MnO nanoparticles (NPs) for an advanced LIC anode. In this architecture, the inner-connected tubular GS framework plays a multifunctional role: serving as an electron transport bridge like “highways”, providing a favorable ion transport pathway as well as accommodating the volume expansion and maintaining the structural stability of MnO. Benefiting from the stable structure, highly localized charge-transfer and low energy diffusion barrier, the as-built anode exhibits an ultrahigh-rate behavior (203 mAh g−1 at 20 A g−1) and robust cycling stability (759 mAh g−1 after 1000 cycles at 2 A g−1). When evaluated as a self-supported anode for LIC, the LIC delivers a high energy density of 179.3 Wh kg−1, a high power density of 11.7 kW kg−1, and a capacity retention of 80.8% after 5000 cycles. Moreover, the corresponding soft-packaged LIC keeps stable electrochemical performances at various bending states. All these features manifest the potential of the architecture for application in advanced energy storage devices.



中文翻译:

自支撑的3D互连石墨烯涡旋框架上原位锚固MnO纳米颗粒:快速动力学增强的锂离子电容器超高倍率阳极

锂离子电容器(LIC)被认为是锂离子电池和超级电容器之间的理想补充。然而,导致法拉第插入阳极的差速能力差的动力学缓慢仍然是一个障碍。在本文中,通过将互连的石墨烯涡旋(GS)框架与原位形成的分布均匀的MnO纳米颗粒(NPs)用于高级LIC阳极相结合,来设计自支撑体系结构。在此体系结构中,内部连接的管状GS框架起着多功能的作用:充当“高速公路”之类的电子传输桥,提供了有利的离子传输路径,并适应了MnO的体积膨胀并保持其结构稳定性。得益于稳定的结构,高度局部化的电荷转移和低能量扩散势垒,-1在20 A G -1)和鲁棒的循环稳定性(759毫安克-1后2 A G 1000次循环-1)。当评估为LIC的自支撑阳极时,LIC在5000次循环后可提供179.3 Wh kg -1的高能量密度,11.7 kW kg -1的高功率密度和80.8%的容量保持率。而且,相应的软包装LIC在各种弯曲状态下保持稳定的电化学性能。所有这些功能都表明了该架构在高级能量存储设备中的应用潜力。

更新日期:2020-09-07
down
wechat
bug