当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance
Energy Storage Materials ( IF 18.9 ) Pub Date : 2020-08-30 , DOI: 10.1016/j.ensm.2020.08.011
Hao Luo , Bo Wang , Changlai Wang , Fangdong Wu , Fan Jin , Bowen Cong , Yu Ning , Yu Zhou , Dianlong Wang , Huakun Liu , Shixue Dou

Aqueous zinc-ion batteries (ZIBs) are promising for cost-efficient and safe energy storage but are still hindered by the limiting comprehensive performance of cathode materials. Deficiency and heterojunction engineering are both highly accredited strategies for boosting the intrinsic ion/electron kinetics and structural stability of these materials, however, neither of above-mentioned strategies could achieve a satisfied effect due to their own limitations. Obviously, the fine combination of the advantages of deficiency and heterojunction engineering should be an effective way towards further improvement. As a proof of concept, here, we take VO2 as an example to construct a spongy three-dimensional (3D) VO2 composite with enriched oxygen vacancies and graphene-modified heterointerfaces (Od-VO2-rG). The density functional theory (DFT) calculations confirm that oxygen vacancies could effectively modulate the Zn2+ adsorption energy resulting in reversible Zn2+ adsorption/desorption. Meanwhile, the graphene-modified heterointerface enables the rapid electron transfer. Impressively, Od-VO2-rG delivers superior comprehensive performance with high capacity (376 mAh g−1 at 0.1 A g−1), impressive rate capability (116 mAh g−1 at 20 A g−1) and satisfactory cycling stability (88.6% capacity retention after 5000 cycles). This rational design by combining deficiency and heterojunction engineering opens up a method towards advanced electrode materials for superior comprehensive performance.



中文翻译:

协同缺陷和异质结工程提高了水性锌离子电池的VO 2氧化还原动力学,具有优异的综合性能

水性锌离子电池(ZIBs)有望实现经济高效且安全的能量存储,但仍然受到阴极材料综合性能的限制。缺陷和异质结工程都是提高这些材料的固有离子/电子动力学和结构稳定性的高度认可的策略,但是,由于它们自身的局限性,上述两种策略都无法获得令人满意的效果。显然,将缺陷和异质结工程的优点完美地结合起来应该是进一步改进的有效途径。作为概念验证,这里以VO 2为例,构建海绵状三维(3D)VO 2复合材料富集氧空位和石墨烯改性的异质(O d -VO 2 -rg)。密度泛函理论(DFT)的计算证实,氧空位可以有效地调节Zn 2+的吸附能,从而导致可逆的Zn 2+吸附/解吸。同时,石墨烯修饰的异质界面实现了快速的电子转移。令人印象深刻,O- d -VO 2 -rg提供具有高容量(376毫安克优良综合性能-1 0.1 A G -1),令人印象深刻的速率能力(116毫安克-1在20 A G -1)和令人满意的循环稳定性(5000次循环后,容量保持率为88.6%)。通过将缺陷和异质结工程相结合的合理设计,为高级电极材料开辟了一种实现卓越综合性能的方法。

更新日期:2020-09-08
down
wechat
bug