当前位置: X-MOL 学术J. Contam. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laboratory results and mathematical modeling of spore surface interactions in stormwater runoff.
Journal of Contaminant Hydrology ( IF 3.5 ) Pub Date : 2020-08-29 , DOI: 10.1016/j.jconhyd.2020.103707
Anne M Mikelonis 1 , Katherine Ratliff 1 , Sungmin Youn 2
Affiliation  

Development of numerical models to predict stormwater-mediated transport of pathogenic spores in the environment depends on an understanding of adhesion forces that dictate detachment after rain events. Zeta potential values were measured in the laboratory for Bacillus globigii and Bacillus thuringiensis kurstaki, two common surrogates used to represent Bacillus anthracis, in synthetic baseline ultrapure water and laboratory prepared stormwater. Zeta potential curves were also determined for materials representative of urban infrastructure (concrete and asphalt). These data were used to predict the interaction energy between the spores and urban materials using Derjaguin-Landau-Verwey-Overbeek (DLVO) modeling. B. globigii and B. thuringiensis kurstaki sourced from Yakibou Inc., were found to have similar zeta potential curves, whereas spores sourced from the U.S. military's Dugway laboratory were found to diverge. In the ultrapure water, the modeling results use the laboratory data to demonstrate that the energy barriers between the spores and the urban materials were tunable through compression of the electrical double layer of the spores via changes of ionic strength and pH of the water. In the runoff water, charge neutralization dominated surface processes. The cations, metals, and natural organic matter (NOM) in the runoff water contributed to equalizing the zeta potential values for Dugway B. globigii and B. thuringiensis kurstaki, and drastically modified the surface of the concrete and asphalt. All DLVO energy curves using the runoff water were repulsive. The highest energy barrier predicted in this study was for Dugway B. globigii spores interacting with a concrete surface in runoff water, suggesting that this would be the most challenging combination to detach through water-based decontamination.



中文翻译:


暴雨径流中孢子表面相互作用的实验室结果和数学模型。



开发数值模型来预测环境中由雨水介导的致病孢子的运输取决于对降雨后决定分离的粘附力的理解。在实验室中测量了合成基线超纯水和实验室制备的雨水中球芽孢杆菌苏云金芽孢杆菌(用于代表炭疽芽孢杆菌的两种常见替代物)的 Zeta 电位值。还确定了代表城市基础设施的材料(混凝土和沥青)的 Zeta 电位曲线。这些数据用于通过 Derjaguin-Landau-Verwey-Overbeek (DLVO) 模型预测孢子与城市材料之间的相互作用能量。产自 Yakibou Inc. 的球芽孢杆菌苏云金芽孢杆菌被发现具有相似的 zeta 电位曲线,而产自美国军方杜格威实验室的孢子却存在差异。在超纯水中,建模结果使用实验室数据证明,孢子和城市材料之间的能量屏障可以通过改变水的离子强度和 pH 值来压缩孢子的双电层来调节。在径流水中,电荷中和主导着表面过程。径流水中的阳离子、金属和天然有机物 (NOM) 有助于平衡 Dugway B. globigiiB. thuringiensis kurstaki的 zeta 电位值,并极大地改变了混凝土和沥青的表面。所有使用径流水的 DLVO 能量曲线都是排斥的。本研究中预测的最高能垒是 Dugway B. globigii 孢子与径流水中的混凝土表面相互作用,表明这将是通过水基净化分离的最具挑战性的组合。

更新日期:2020-08-29
down
wechat
bug