当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cellulose assisted combustion synthesis of high surface area Ni-MgO catalysts: Mechanistic studies
Combustion and Flame ( IF 5.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.combustflame.2020.08.026
V. Danghyan , T. Orlova , S. Roslyakov , E.E. Wolf , A.S. Mukasyan

Abstract The objective of this study was to determine the combustion mechanism of cellulose paper impregnated with Mg(NO3)2, Ni(NO3)2, glycine solutions, and their different combinations. It was established that the combustion mechanism changes as a function of the impregnated media composition. In the Mg(NO3)2-cellulose system, Mg2+ ions strongly catalyze cellulose pyrolysis; hence no atmospheric oxygen is needed for the self-sustained combustion reaction. In the Ni(NO3)2-cellulose system, Ni2+ ions catalyze pyrolysis at a lower rate, and atmospheric oxygen assists the combustion wave propagation. In glycine containing systems, glycine blocks the ability of metal cations to catalyze the early cellulose pyrolysis, and the combustion front propagates due to the exothermic reactions between metal nitrates and glycine. The above mechanisms influence the microstructure of the combustion products. Due to the near-complete degradation of cellulose fibers during the Mg2+ catalyzed pyrolytic combustion, the resulting materials had a highly porous, sponge-like microstructure with a BET surface area of up to 152 m2/g. After the reduction in hydrogen, Ni segregates to the surface of NiO-MgO solid solution, and the resulting catalysts exhibited near-equilibrium methane conversion during the dry reforming of methane reaction at 600°C with low carbon formation and no deactivation for 24 h of time on stream.

中文翻译:

高表面积Ni-MgO催化剂的纤维素辅助燃烧合成:机理研究

摘要 本研究的目的是确定用Mg(NO3)2、Ni(NO3)2、甘氨酸溶液及其不同组合浸渍的纤维素纸的燃烧机理。已确定燃烧机制随着浸渍介质成分的变化而变化。在Mg(NO3)2-纤维素体系中,Mg2+离子强烈催化纤维素热解;因此,自持燃烧反应不需要大气中的氧气。在 Ni(NO3)2-纤维素系统中,Ni2+ 离子以较低的速率催化热解,而大气中的氧气有助于燃烧波的传播。在含甘氨酸的系统中,甘氨酸会阻止金属阳离子催化早期纤维素热解的能力,并且由于金属硝酸盐和甘氨酸之间的放热反应,燃烧前沿传播。上述机制影响燃烧产物的微观结构。由于在 Mg2+ 催化热解燃烧过程中纤维素纤维几乎完全降解,所得材料具有高度多孔的海绵状微观结构,BET 表面积高达 152 m2/g。氢气还原后,Ni 偏析到 NiO-MgO 固溶体表面,所得催化剂在 600°C 干法重整甲烷反应过程中表现出接近平衡的甲烷转化率,低碳生成,24 h 无失活。直播时间。
更新日期:2020-11-01
down
wechat
bug