当前位置: X-MOL 学术arXiv.cs.CE › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A fractional stochastic theory for interfacial polarization of cell aggregates
arXiv - CS - Computational Engineering, Finance, and Science Pub Date : 2020-08-25 , DOI: arxiv-2008.11819
Pouria A. Mistani, Samira Pakravan, Frederic G. Gibou

We present a theoretical framework to model the electric response of cell aggregates. We establish a coarse representation for each cell as a combination of membrane and cytoplasm dipole moments. Then we compute the effective conductivity of the resulting system, and thereafter derive a Fokker-Planck partial differential equation that captures the time-dependent evolution of the distribution of induced cellular polarizations in an ensemble of cells. Our model predicts that the polarization density parallel to an applied pulse follows a skewed t-distribution, while the transverse polarization density follows a symmetric t-distribution, which are in accordance with our direct numerical simulations. Furthermore, we report a reduced order model described by a coupled pair of ordinary differential equations that reproduces the average and the variance of induced dipole moments in the aggregate. We extend our proposed formulation by considering fractional order time derivatives that we find necessary to explain anomalous relaxation phenomena observed in experiments as well as our direct numerical simulations. Owing to its time-domain formulation, our framework can be easily used to consider nonlinear membrane effects or intercellular couplings that arise in several scientific, medical and technological applications.

中文翻译:

细胞聚集体界面极化的分数随机理论

我们提出了一个理论框架来模拟细胞聚集体的电响应。我们将每个细胞的粗略表示作为膜和细胞质偶极矩的组合。然后我们计算所得系统的有效电导率,然后推导出 Fokker-Planck 偏微分方程,该方程捕获细胞集合中诱导细胞极化分布的时间依赖性演变。我们的模型预测平行于施加脉冲的极化密度遵循偏斜的 t 分布,而横向极化密度遵循对称的 t 分布,这与我们的直接数值模拟一致。此外,我们报告了由一对耦合的常微分方程描述的降阶模型,该方程再现了聚合中诱导偶极矩的平均值和方差。我们通过考虑分数阶时间导数来扩展我们提出的公式,我们认为这些分数阶时间导数对于解释实验中观察到的异常松弛现象以及我们的直接数值模拟是必要的。由于其时域公式化,我们的框架可以很容易地用于考虑在一些科学、医学和技术应用中出现的非线性膜效应或细胞间耦合。我们通过考虑分数阶时间导数来扩展我们提出的公式,我们认为这些分数阶时间导数对于解释实验中观察到的异常松弛现象以及我们的直接数值模拟是必要的。由于其时域公式化,我们的框架可以很容易地用于考虑在一些科学、医学和技术应用中出现的非线性膜效应或细胞间耦合。我们通过考虑分数阶时间导数来扩展我们提出的公式,我们认为这些分数阶时间导数对于解释实验中观察到的异常松弛现象以及我们的直接数值模拟是必要的。由于其时域公式,我们的框架可以很容易地用于考虑非线性膜效应或细胞间耦合,这些效应出现在一些科学、医学和技术应用中。
更新日期:2020-08-28
down
wechat
bug