当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmon-Enhanced Greenhouse Selectivity for High-Temperature Solar Thermal Energy Conversion.
ACS Nano ( IF 15.8 ) Pub Date : 2020-08-28 , DOI: 10.1021/acsnano.0c04982
Zachary J Berquist 1 , Kevin K Turaczy 1 , Andrej Lenert 1
Affiliation  

The greenhouse effect arises when thermal radiation is forced to undergo absorption and re-emission many times before escaping, while sunlight transmits largely unimpeded. Although this effect is responsible for global warming, it is generally weak in solid-state materials because radiation can be easily overpowered by other modes of heat transfer. Here, we report on the use of infrared plasmonic nanoparticles to enhance the greenhouse effect in transparent mesoporous materials. Local surface plasmon resonances in transparent conducting oxide nanoparticles (TCO NPs) selectively shorten the mean free path of thermal photons while maintaining high solar transmittance. The addition of a small amount of TCO NPs (<0.1% by volume) nearly halves the heat losses at 700 °C. This leads to an experimentally demonstrated effective thermal emittance of ∼0.17 at 700 °C, which is the lowest reported value to date, among all selective surfaces and transparent insulating materials measured at 650 °C or above. Our results show that plasmon-enhanced greenhouse selectivity (PEGS) is a promising mechanism for spectral control of radiative heat transfer, and more specifically, for conversion of minimally concentrated sunlight into high-temperature heat.

中文翻译:

用于高温太阳能热能转化的等离子增强温室选择性。

当热辐射在逃逸之前被强迫多次吸收和重新发射时,就会产生温室效应,而阳光在很大程度上不受阻碍地传输。尽管这种效应是造成全球变暖的原因,但在固态材料中通常较弱,因为辐射很容易被其他传热方式压倒。在这里,我们报告使用红外等离激元纳米粒子来增强透明介孔材料中的温室效应。透明导电氧化物纳米颗粒(TCO NPs)中的局部表面等离振子共振选择性地缩短了热光子的平均自由程,同时保持了高的太阳能透射率。添加少量的TCO NPs(<0.1%(体积))几乎可以将700°C下的热损失减半。这导致实验证明有效散热率为〜0。在所有选择性表面和在650°C或更高温度下测量的透明绝缘材料中,在700°C时为17,这是迄今为止最低的报告值。我们的结果表明,等离激元增强温室选择性(PEGS)是一种有前途的机制,可用于辐射热传递的光谱控制,更具体地说,是将最低浓度的日光转换为高温热的方法。
更新日期:2020-10-28
down
wechat
bug