当前位置: X-MOL 学术Regen. Biomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Au, Pd and maghemite nanofunctionalized hydroxyapatite scaffolds for bone regeneration
Regenerative Biomaterials ( IF 5.6 ) Pub Date : 2020-08-27 , DOI: 10.1093/rb/rbaa033
Giovanna Calabrese 1 , Salvatore Petralia 2 , Claudia Fabbi 3 , Stefano Forte 4 , Domenico Franco 1 , Salvatore Guglielmino 1 , Emanuela Esposito 1 , Salvatore Cuzzocrea 1 , Francesco Traina 5, 6 , Sabrina Conoci 1, 7
Affiliation  

Abstract
Nanotechnology plays a key role in the development of innovative scaffolds for bone tissue engineering (BTE) allowing the incorporation of nanomaterials able to improve cell proliferation and differentiation. In this study, Mg-HA-Coll type I scaffolds (Mg-HA-based scaffolds) were nanofunctionalized with gold nanorods (Au NRs), palladium nanoparticles (Pd NPs) and maghemite nanoparticles (MAG NPs). Nanofunctionalized Mg-HA-based scaffolds (NF-HA-Ss) were tested for their ability to promote both the proliferation and the differentiation of adipose-derived mesenchymal stem cells (hADSCs). Results clearly highlight that MAG nanofunctionalization substantially improves cell proliferation up to 70% compared with the control (Mg-HA-based scaffold), whereas both Au NRs and Pd NPs nanofunctionalization induce a cell growth inhibition of 94% and 89%, respectively. Similar evidences were found for the osteoinductive properties showing relevant calcium deposits (25% higher than the control) for MAG nanofunctionalization, while a decreasing of cell differentiation (20% lower than the control) for both Au NRs and Pd NPs derivatization. These results are in agreement with previous studies that found cytotoxic effects for both Pd NPs and Au NRs. The excellent improvement of both osteoconductivity and osteoinductivity of the MAG NF-HA-S could be attributed to the high intrinsic magnetic field of superparamagnetic MAG NPs. These findings may pave the way for the development of innovative nanostructured scaffolds for BTE.


中文翻译:

金,钯和磁赤铁矿纳米功能化羟基磷灰石支架,用于骨骼再生

摘要
纳米技术在开发用于骨组织工程学(BTE)的创新支架中起着关键作用,这种支架可以掺入能够改善细胞增殖和分化的纳米材料。在这项研究中,Mg-HA-Coll I型支架(基于Mg-HA的支架)被金纳米棒(Au NRs),钯纳米颗粒(Pd NPs)和磁赤铁矿纳米颗粒(MAG NPs)纳米功能化。测试了纳米功能化的基于Mg-HA的支架(NF-HA-Ss)促进脂肪来源的间充质干细胞(hADSCs)增殖和分化的能力。结果清楚地表明,与对照(基于Mg-HA的支架)相比,MAG纳米功能化可显着改善细胞增殖,最高可达70%,而Au NRs和Pd NPs纳米功能化均可诱导94%和89%的细胞生长抑制,分别。对于骨诱导特性,发现了相似的证据,表明MAG纳米功能化具有相关的钙沉积(比对照组高25%),而Au NRs和Pd NPs衍生化的细胞分化减少(比对照组低20%)。这些结果与以前的研究一致,后者对Pd NP和Au NRs均具有细胞毒性作用。MAG NF-HA-S的骨电导率和骨电导率的优异提高可归因于超顺磁性MAG NP的高固有磁场。这些发现可能为创新的BTE纳米结构支架的开发铺平了道路。而Au NRs和Pd NPs衍生化的细胞分化降低(比对照组低20%)。这些结果与以前的研究一致,后者发现了对Pd NPs和Au NRs都有细胞毒性作用。MAG NF-HA-S的骨电导率和骨电导率的优异提高可归因于超顺磁性MAG NP的高固有磁场。这些发现可能为创新的BTE纳米结构支架的开发铺平了道路。而Au NRs和Pd NPs衍生化的细胞分化降低(比对照组低20%)。这些结果与以前的研究一致,后者对Pd NP和Au NRs均具有细胞毒性作用。MAG NF-HA-S的骨电导率和骨电导率的优异提高可归因于超顺磁性MAG NP的高固有磁场。这些发现可能为创新的BTE纳米结构支架的开发铺平了道路。MAG NF-HA-S的骨电导率和骨电导率的优异提高可归因于超顺磁性MAG NP的高固有磁场。这些发现可能为创新的BTE纳米结构支架的开发铺平了道路。MAG NF-HA-S的骨电导率和骨电导率的优异提高可归因于超顺磁性MAG NP的高固有磁场。这些发现可能为创新的BTE纳米结构支架的开发铺平了道路。
更新日期:2020-10-15
down
wechat
bug