当前位置: X-MOL 学术Phys. Rev. Phys. Educ. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Towards a research program in designing and evaluating teaching materials: An example from dc resistive circuits in introductory physics
Physical Review Physics Education Research ( IF 2.6 ) Pub Date : 
Kristina Zuza, Paulo Sarriugarte, Jaume Ametller, Paula R. L. Heron, Jenaro Guisasola

And last but not least, there is no mention of the transient processes that occur because the approach is based on Ohm’s law and Kirchhoff ’s rules, which are exclusively based on stationary states. In addition, in discussions of the Drude model, it is said that the electrons in a wire are influenced by an electric field within the conductor. In the context of electrostatics, the students have seen arguments that conclude that there is no electric field inside a conductor, and so, the previous statement may be puzzling for them. For a physicist, it is evident that the argument does not apply to the DC circuit, as it is in electrostatic equilibrium while the wire is in a stationary non-equilibrium state. However we have to be aware of the teaching problems involved in working on the transition, from the electrostatic to the DC case with respect to the Drude model. The aforementioned issues go beyond justifying empirical measurements in DC circuits using meters. At a university or college introductory physics course level, there is often a need to find an alternative to a purely macroscopic description. At the macroscopic scale, we are often left with limited explanations to indicate what the laws predict. These types of explanations are insufficient to satisfy students, especially when alternative conceptions arise. There has been a growing consensus that students benefit from being exposed to the microlevel phenomena that govern electricity and DC circuits [65, 66]. It is necessary to justify how the electrical field is generated inside the conducting wire and the relation between this electric field and the electric field inside a conductor in electrostatics. In addition, it is necessary to clarify that the relation established in electrostatics ($\vec{E}=\thinspace \vec{\nabla }V)$ is also valid in an electrical circuit. Regarding the macroscopic and microscopic levels of circuit analysis, it is necessary to relate the potential differences that quantify the energy conservation principle in the circuit (Kirchhoff’s second rule) to the electric field inside the wire (the microscopic model of electric current). The historical development of explanatory models for electric circuits informs the above discussion. The epistemological changes in reasoning and axiological changes with regard to goals and interests adopted by the scientific community can help us define learning objectives. The historical development of the physics of electricity shows that the different steps of developing models are heading towards the unification of electrostatics and electrodynamics into one explicative model. In 1827, Ohm contributed to circuit theory through his law for conductors. Ohm clarified the separate and complementary roles of current and potential at a time when both were confused [67, 68]. G. Kirchhoff made the greatest step in developing the concept of potential and circuit theory by proposing the existence of a gradient of charges on the surface. Kirchhoff demonstrated that Volta’s “electrical tension” and Poisson’s potential function were numerically identical in a conductor and therefore could be reduced to a single concept. Thus, he showed that electrostatic and circuit phenomena belonged to one science, not two [69]. From this unification, the role of potential came to dominate circuit analysis with little emphasis on surface charge distribution. In 1852, Wilhelm Weber pointed out that although a …

中文翻译:

制定一个设计和评估教材的研究计划:以直流阻性电路为例的入门物理学示例

最后但并非最不重要的一点是,没有提及发生的瞬态过程,因为该方法基于欧姆定律和基尔霍夫定律,而这些定律仅基于稳态。另外,在讨论Drude模型时,据说导线中的电子受导体内电场的影响。在静电学的背景下,学生们看到了这样的论点,即得出结论,即导体内部没有电场,因此,先前的陈述可能使他们感到困惑。对于物理学家来说,很明显该论点不适用于直流电路,因为它处于静电平衡状态,而导线处于静止的非平衡状态。但是,我们必须意识到过渡过程中涉及的教学问题,相对于Drude模型,从静电到直流情况。前述问题超出了证明使用仪表在直流电路中进行经验测量的理由。在大学或学院的物理入门课程中,通常需要寻找一种替代方法来代替纯宏观描述。在宏观尺度上,我们常常只得到有限的解释来表明定律的预测。这些类型的解释不足以使学生满意,尤其是在出现其他概念时。越来越多的共识是,学生从暴露于控制电力和直流电路的微观现象中受益[65,66]。必须论证在导线内部如何产生电场,以及该电场与静电中导体内部电场之间的关系。另外,有必要澄清一下在静电中建立的关系($ \ vec {E} = \ thinspace \ vec {\ nabla} V)$在电路中也有效。关于电路分析的宏观和微观层面,有必要将量化电路中能量守恒原理的电势差(基尔霍夫第二定律)与导线内部的电场(电流的微观模型)联系起来。电路解释模型的历史发展为上述讨论提供了参考。科学界通过的关于目标和兴趣的推理和价值论变化的认识论变化可以帮助我们定义学习目标。电物理学的历史发展表明,开发模型的不同步骤正在朝着将静电和电动力学统一为一个解释模型的方向发展。在1827年,欧姆通过他的导体定律为电路理论做出了贡献。欧姆阐明了当电流和电位混淆时,电流和电位的分别和互补的作用[67,68]。G.基尔霍夫(G. Kirchhoff)通过提出表面上电荷梯度的存在,在发展电势和电路理论的概念方面迈出了最大的一步。基尔霍夫(Kirchhoff)证明,伏尔塔的“电张力”和泊松的势函数在导体上在数值上是相同的,因此可以简化为一个概念。因此,他证明静电和电路现象属于一门科学,而不是两门科学[69]。通过这种统一,电势的作用在电路分析中占主导地位,而很少强调表面电荷的分布。1852年,威廉·韦伯指出,尽管... 欧姆阐明了当电流和电位混淆时,电流和电位的分别和互补的作用[67,68]。G.基尔霍夫(G. Kirchhoff)通过提出表面电荷梯度的存在,在发展电势和电路理论的概念方面迈出了最大的一步。基尔霍夫(Kirchhoff)证明,伏尔塔的“电张力”和泊松的势函数在导体上在数值上是相同的,因此可以简化为一个概念。因此,他证明静电和电路现象属于一门科学,而不是两门科学[69]。通过这种统一,电势的作用在电路分析中占主导地位,而很少强调表面电荷的分布。1852年,威廉·韦伯指出,尽管... 欧姆阐明了当电流和电位混淆时,电流和电位的分别和互补的作用[67,68]。G.基尔霍夫(G. Kirchhoff)通过提出表面上电荷梯度的存在,在发展电势和电路理论的概念方面迈出了最大的一步。基尔霍夫(Kirchhoff)证明,伏尔塔的“电张力”和泊松的势函数在导体上在数值上是相同的,因此可以简化为一个概念。因此,他证明静电和电路现象属于一门科学,而不是两门科学[69]。通过这种统一,电势的作用在电路分析中占主导地位,而很少强调表面电荷的分布。1852年,威廉·韦伯指出,尽管... Kirchhoff通过提出表面上电荷梯度的存在,在发展电势和电路理论的概念方面迈出了最大的一步。基尔霍夫(Kirchhoff)证明,伏尔塔的“电张力”和泊松的势函数在导体上在数值上是相同的,因此可以简化为一个概念。因此,他证明静电和电路现象属于一门科学,而不是两门科学[69]。通过这种统一,电势的作用在电路分析中占主导地位,而很少强调表面电荷的分布。1852年,威廉·韦伯指出,尽管... Kirchhoff通过提出表面上电荷梯度的存在,在发展电势和电路理论的概念方面迈出了最大的一步。基尔霍夫(Kirchhoff)证明,伏尔塔的“电张力”和泊松的势函数在导体上在数值上是相同的,因此可以简化为一个概念。因此,他证明静电和电路现象属于一门科学,而不是两门科学[69]。通过这种统一,电势的作用在电路分析中占主导地位,而很少强调表面电荷的分布。1852年,威廉·韦伯指出,尽管... 基尔霍夫(Kirchhoff)证明,伏尔塔的“电张力”和泊松的势函数在导体上在数值上是相同的,因此可以简化为一个概念。因此,他证明静电和电路现象属于一门科学,而不是两门科学[69]。通过这种统一,电势的作用在电路分析中占主导地位,而很少强调表面电荷的分布。1852年,威廉·韦伯指出,尽管... 基尔霍夫(Kirchhoff)证明,伏尔塔的“电张力”和泊松的势函数在导体上在数值上是相同的,因此可以简化为一个概念。因此,他证明静电和电路现象属于一门科学,而不是两门科学[69]。通过这种统一,电势的作用在电路分析中占主导地位,而很少强调表面电荷的分布。1852年,威廉·韦伯指出,尽管...
更新日期:2020-08-28
down
wechat
bug