当前位置: X-MOL 学术Front. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Effect of Cold Swaging Deformation on the Microstructures and Mechanical Properties of a Novel Metastable β Type Ti–10Mo–6Zr–4Sn–3Nb Alloy for Biomedical Devices
Frontiers in Materials ( IF 2.6 ) Pub Date : 2020-06-22 , DOI: 10.3389/fmats.2020.00228
Jun Cheng , Hongchuan Wang , Jinshan Li , Jinyang Gai , Jinming Ru , Zhaoxin Du , Jiangkun Fan , Jinlong Niu , Hongjie Song , Zhentao Yu

This work investigated the microstructures, texture evolution, and mechanical properties of newly designed metastable β type Ti–10Mo–6Zr–4Sn–3Nb (wt.%) alloys for biomedical devices, which were subjected to cold swaging deformation with reductions of 15–75%. With the increment in the reduction of swaging deformation, the grains are broken and gradually refined, and stress-induced martensite transformation takes place, resulting in the formation of the α” phase. Moreover, the {1 1 2} <1 1 1> and {1 1 0} <1 1 2> fibers turn into γ-fiber {1 1 1} <1 1 0> and α-fiber {1 1 2} <1 1 0> with the increment in the swaging reduction. The α-fiber texture in particular, first weakens and then strengthens during cold deformation. Under the combined effect of sub-structures, grain refinement, and texture evolution, the strength of the alloy is gradually enhanced with the increment in the cold deformation reduction. The solution-treated alloy bar shows superior cold workability in the swaging process. The plasticity remains at a moderate level because the initial grains have not been completely broken at the beginning of cold swaging deformation. The elastic modulus of the alloy shows a downward trend with an increasing reduction, which is related to the dislocation multiplication, grain refinement, and grain orientation evolution during cold swaging deformation.



中文翻译:

冷锻变形对新型亚稳β型Ti–10Mo–6Zr–4Sn–3Nb合金用于生物医学装置的组织和力学性能的影响

这项工作研究了用于生物医学设备的新设计的亚稳β型Ti–10Mo–6Zr–4Sn–3Nb(wt。%)合金的微观结构,织构演变和力学性能,这些合金经受了15–75的冷锻变形%。随着型锻变形减少的增加,晶粒破碎并逐渐细化,并发生了应力诱导的马氏体相变,从而形成了α”相。此外,{1 1 2} <1 1 1>和{1 1 0} <1 1 2>纤维变成γ纤维{1 1 1} <1 1 0>和α纤维{1 1 2} < 1 1 0>,随着型锻减少量的增加。特别是在冷变形期间,α纤维质地会先减弱然后增强。在子结构,晶粒细化和纹理演变的综合作用下,随着冷变形减少的增加,合金的强度逐渐增强。固溶处理的合金棒在型锻过程中显示出优异的冷加工性能。可塑性保持在中等水平,因为初始晶粒在冷锻变形开始时并未完全破碎。合金的弹性模量呈下降趋势,并随着增加而减小,这与冷锻变形过程中的位错倍增,晶粒细化和晶粒取向演变有关。可塑性保持在中等水平,因为初始晶粒在冷锻变形开始时并未完全破碎。合金的弹性模量呈下降趋势,并随着增加而减小,这与冷锻变形过程中的位错倍增,晶粒细化和晶粒取向演变有关。可塑性保持在中等水平,因为初始晶粒在冷锻变形开始时并未完全破碎。合金的弹性模量呈下降趋势,并随着增加而减小,这与冷锻变形过程中的位错倍增,晶粒细化和晶粒取向演变有关。

更新日期:2020-08-28
down
wechat
bug