当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diazonium Electrografting vs. Physical Adsorption of Azure A at Carbon Nanotubes for Mediated Glucose Oxidation with FAD‐GDH
ChemElectroChem ( IF 3.5 ) Pub Date : 2020-08-28 , DOI: 10.1002/celc.202000953
Andrew James Gross 1 , Shunya Tanaka 2 , Clara Colomies 3 , Fabien Giroud 4 , Yuta Nishina 5 , Serge Cosnier 4 , Seiya Tsujimura 2 , Michael Holzinger 4
Affiliation  

The electrochemical reduction of aryldiazonium salts is a versatile and direct route to obtain robust covalently modified electrodes. We report here a comparative study of Azure A modified carbon nanotube electrodes prepared by diazonium electrografting and by physical adsorption for bioelectrocatalytic glucose oxidation with fungal FAD‐glucose dehydrogenase from Aspergillus sp. The electrografted and adsorbed electrodes exhibited different reversible electroactivity consistent with polymer‐type and monomer‐type phenothiazine surface assemblies, respectively. The electrografted Azure A electrodes exhibited superior mediated bioelectrocatalysis compared to the adsorbed Azure A electrodes. A more than 10‐fold higher catalytic current up to 2 mA cm−2 at 0.2 V vs. Ag/AgCl together with a similarly low onset potential of −0.05 V vs. Ag/AgCl was observed at the electrografted electrodes. Faster estimated electron transfer kinetics and a +200 mV potential shift for the polymer‐type redox couple vs. the adsorbed monomer‐type couple underlines the favourable driving force for mediated electron transfer with the buried FAD active site for the diazonium‐derived bioelectrode.

中文翻译:

重氮电接枝vs.Azure A在碳纳米管上对FAD-GDH介导的葡萄糖氧化的物理吸附

芳基重氮盐的电化学还原是获得坚固的共价修饰电极的通用且直接的途径。我们在这里报告了通过重氮电接枝和物理吸附制备的Azure A改性碳纳米管电极的比较研究,该电极通过曲霉属真菌FAD-葡萄糖脱氢酶进行生物电催化葡萄糖氧化。电接枝和吸附电极分别具有不同的可逆电活性,分别与聚合物型和单体型吩噻嗪表面组件一致。与吸附的Azure A电极相比,电嫁接的Azure A电极表现出优异的介导的生物电催化作用。0.2 V相比,高达2 mA cm -2的催化电流高出10倍以上。的Ag / AgCl与-0.05 V的类似的低开始电位一起VS。在电接枝电极处观察到Ag / AgCl。更快的估计电子转移动力学和聚合物型的氧化还原对一个200毫伏电位漂移VS。吸附的单体型偶对突显了重氮衍生生物电极埋入的FAD活性位点介导的电子转移的有利驱动力。
更新日期:2020-08-28
down
wechat
bug