当前位置: X-MOL 学术J. Appl. Physiol. Cell Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coordinate adaptations of skeletal muscle and kidney to adjust extracellular [K+] during K+ deficient diet in mice.
American Journal of Physiology-Cell Physiology ( IF 5.0 ) Pub Date : 2020-08-26 , DOI: 10.1152/ajpcell.00362.2020
Brandon E McFarlin 1 , Yuhan Chen 2, 3 , Taylor S Priver 1 , Donna L Ralph 1 , Adriana Mercado 4 , Gerardo Gamba 5 , Meena S Madhur 2 , Alicia A McDonough 1
Affiliation  

Extracellular fluid (ECF) [K+] is maintained by adaptations of kidney and skeletal muscle, responses heretofore studied separately. We aimed to determine how these organ systems work in concert to preserve ECF [K+] in male C57BL/6J mice fed a K+ deficient diet (0K) versus 1% K+ diet (1K) for 10 days (n=5-6/group). During 0K feeding, plasma [K+] fell from 4.5 to 2 mM; hindlimb muscle (gastrocnemius and soleus) lost 28 mM K+ (from 115 ± 2 to 87 ± 2 mM) and gained 27 mM Na+ (from 27 ± 0.4 to 54 ± 2 mM). Doubling of muscle tissue [Na+] was not associated with inflammation, cytokine production or hypertension as reported by others. Muscle transporters' adaptations in 0K vs. 1K fed mice, assessed by immunoblot, included decreased sodium pump a2-b2 subunits, decreased K+- Cl-- cotransporter isoform 3, and increased phosphorylated (p) Na+-K+-2 Cl- cotransporter isoform 1 (NKCC1p), Ste20/SPS-1 related proline-alanine rich kinase (SPAKp) and oxidative stress responsive kinase 1 (OSR1p) consistent with intracellular fluid (ICF) K+ loss and Na+ gain. Renal transporters' adaptations, effecting a 98% reduction in K+ excretion, included 2-3-fold increased phosphorylated Na+-Cl- cotransporter (NCCp), SPAKp and OSR1p abundance, limiting Na+ delivery to epithelial Na+ channels where Na+ reabsorption drives K+ secretion; renal K sensor Kir 4.1 abundance fell 25%. Mass balance estimations indicate that over 10 days of 0K feeding, mice lose ~48 mmol K+ into the urine and muscle shifts ~47 mmol K+ from ICF to ECF, illustrating the importance of the concerted responses during K+ deficiency.

中文翻译:


在小鼠 K+ 缺乏饮食期间协调骨骼肌和肾脏的适应以调整细胞外 [K+]。



细胞外液 (ECF) [K + ] 通过肾脏和骨骼肌的适应来维持,迄今为止的反应是单独研究的。我们的目的是确定这些器官系统如何协同工作,以在喂食缺乏 K +饮食 (0K) 与 1% K +饮食 (1K) 的雄性 C57BL/6J 小鼠中保持 ECF [K + ] 10 天 (n=5- 6/组)。在 0K 喂养期间,血浆 [K + ] 从 4.5 降至 2 mM;后肢肌肉(腓肠肌和比目鱼肌)损失 28 mM K + (从 115 ± 2 到 87 ± 2 mM)并增加 27 mM Na + (从 27 ± 0.4 到 54 ± 2 mM)。正如其他人报道的那样,肌肉组织 [Na + ] 的倍增与炎症、细胞因子产生或高血压无关。通过免疫印迹评估,0K 与 1K 喂养小鼠的肌肉转运蛋白适应性包括钠泵 a2-b2 亚基减少、K + - Cl - - 协同转运蛋白亚型 3 减少和磷酸化 (p) Na + -K + -2 Cl 增加-协同转运蛋白亚型 1 (NKCC1p)、Ste20/SPS-1 相关富含脯氨酸丙氨酸激酶 (SPAKp) 和氧化应激反应激酶 1 (OSR1p) 与细胞内液 (ICF) K +损失和 Na +增加一致。肾脏转运蛋白的适应性,导致 K +排泄减少 98%,包括磷酸化 Na + -Cl -协同转运蛋白 (NCCp)、SPAKp 和 OSR1p 丰度增加 2-3 倍,限制 Na +输送到上皮 Na +通道,其中 Na +重吸收驱动K +分泌;肾K传感器Kir 4.1丰度下降25%。 质量平衡估计表明,经过 10 天的 0K 喂养,小鼠通过尿液损失了约 48 mmol K + ,肌肉将约 47 mmol K +从 ICF 转移到 ECF,这说明了 K +缺乏期间协调反应的重要性。
更新日期:2020-08-27
down
wechat
bug