当前位置: X-MOL 学术J. Materiomics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature
Journal of Materiomics ( IF 8.4 ) Pub Date : 2020-08-27 , DOI: 10.1016/j.jmat.2020.08.006
Jiemin Wang , Dan Liu , Quanxiang Li , Cheng Chen , Zhiqiang Chen , Minoo Naebe , Pingan Song , David Portehault , Christopher J. Garvey , Dmitri Golberg , Weiwei Lei

Waste heat management holds great promise to create a sustainable and energy-efficient society as well as contributes to the alleviation of global warming. Harvesting and converting this waste heat in order to improve the efficiency is a major challenge. Here we report biomimetic nacre-like hydroxyl-functionalized boron nitride (BN)-polyimide (PI) nanocomposite membranes as efficient 2D in-plane heat conductor to dissipate and convert waste heat at high temperature. The hierarchically layered nanostructured membrane with oriented BN nanosheets gives rise to a very large anisotropy in heat transport properties, with a high in-plane thermal conductivity (TC) of 51 W m−1 K−1 at a temperature of ∼300 °C, 7314% higher than that of the pure polymer. The membrane also exhibits superior thermal stability and fire resistance, enabling its workability in a hot environment. In addition to cooling conventional exothermic electronics, the large TC enables the membrane as a thin and 2D anisotropic heat sink to generate a large temperature gradient in a thermoelectric module (ΔT = 23 °C) through effective heat diffusion on the cold side under 220 °C heating. The waste heat under high temperature is therefore efficiently harvested and converted to power electronics, thus saving more thermal energy by largely decreasing consumption.



中文翻译:

纳米仿生纳米复合膜可在高温下有效平面内散发热量

废热管理对建立可持续发展和高能效的社会具有巨大的希望,并有助于减轻全球变暖。收集和转化这些废热以提高效率是一项重大挑战。在这里,我们报告仿生珍珠母般的羟基官能化氮化硼(BN)-聚酰亚胺(PI)纳米复合膜作为有效的2D平面内导热体,可以在高温下消散和转化废热。具有定向BN纳米片的分层纳米结构化膜在传热性能方面具有非常大的各向异性,且面内热导率(TC)为51 W m -1  K -1在约300°C的温度下,比纯聚合物的温度高7314%。该膜还具有出色的热稳定性和耐火性,从而使其在高温环境下仍可使用。除了冷却常规的放热电子器件外,大的TC还可以使薄膜作为薄的2D各向异性散热器,通过在220°C下在冷侧有效地散热,从而在热电模块中产生较大的温度梯度(ΔT= 23°C)。 C加热。因此,可以有效地收集高温下的废热并将其转化为电力电子设备,从而通过大大减少能耗来节省更多的热能。

更新日期:2020-08-27
down
wechat
bug