当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling of the corium crust of a stratified corium pool during severe accidents in light water reactors
Nuclear Engineering and Design ( IF 1.7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.nucengdes.2020.110816
L. Viot , R. Le Tellier , M. Peybernes

Abstract During Severe Accidents (SAs) in Light Water Reactors (LWRs), the core heat up due to the lack of fuel cooling in the Reactor Pressure Vessel (RPV) may lead to the formation of a so called corium pool (molten core oxidic and metallic liquid materials) relocating in the lower head of the RPV. Within the framework of SA, one strategy to minimize risks of containment failure is the In Vessel Retention (IVR) strategy. To demonstrate the feasibility of such a strategy and to ensure the vessel integrity during the accident, one of the key points is to correctly evaluate the thermal load applied on the RPV wall by the lower head corium pool. Among all the complex coupled transient phenomena taking place in the RPV, the possible solidification of the corium pool, forming the so-called corium crust, has been shown by experimental and numerical results to be a key phenomenon for the IVR strategy. However, in most SA codes, the corium crust is only taken into account as a stationary model playing the role of a thermal resistance between the corium pool and the RPV wall. In this paper, a transient corium crust model is presented which explicitly takes into account the mass, temperature, composition and thermodynamic properties of the crust and pool material. Numerical results, in the context of the IVR strategy, highlight the impact of the transient corium crust modeling in comparison to a stationary modeling. The proposed model opens new perspective of modeling such as the dissolution of the crust and/or its thermo-mechanical behavior.

中文翻译:

轻水反应堆严重事故中分层钆池的钍壳模拟

摘要 在轻水反应堆 (LWR) 发生严重事故 (SAs) 期间,由于反应堆压力容器 (RPV) 中缺乏燃料冷却,堆芯升温可能导致形成所谓的真皮池(熔融堆芯氧化和金属液体材料)重新定位在 RPV 的下封头中。在 SA 框架内,一种将容器故障风险降至最低的策略是容器内保留 (IVR) 策略。为了证明这种策略的可行性并确保事故期间容器的完整性,关键点之一是正确评估下头真皮池施加在 RPV 壁上的热负荷。在 RPV 中发生的所有复杂的耦合瞬态现象中,可能发生的真皮层凝固,形成所谓的真皮层,实验和数值结果表明,这是 IVR 策略的关键现象。然而,在大多数 SA 代码中,真皮仅被视为一个静止模型,在真皮池和 RPV 壁之间起到热阻的作用。在本文中,提出了一个瞬态真皮壳模型,该模型明确考虑了地壳和池材料的质量、温度、成分和热力学特性。在 IVR 策略的背景下,数值结果突出了瞬态真皮层建模与静态建模相比的影响。所提出的模型开辟了建模的新视角,例如地壳的溶解和/或其热机械行为。真皮层仅被视为一个静止模型,在真皮池和 RPV 壁之间起到热阻的作用。在本文中,提出了一个瞬态真皮壳模型,该模型明确考虑了地壳和池材料的质量、温度、成分和热力学特性。在 IVR 策略的背景下,数值结果突出了瞬态真皮建模与静态建模相比的影响。所提出的模型开辟了建模的新视角,例如地壳的溶解和/或其热机械行为。真皮层仅被视为一个静止模型,在真皮池和 RPV 壁之间起到热阻的作用。在本文中,提出了一个瞬态真皮壳模型,该模型明确考虑了地壳和池材料的质量、温度、成分和热力学特性。在 IVR 策略的背景下,数值结果突出了瞬态真皮建模与静态建模相比的影响。所提出的模型开辟了建模的新视角,例如地壳的溶解和/或其热机械行为。地壳和水池材料的组成和热力学性质。在 IVR 策略的背景下,数值结果突出了瞬态真皮建模与静态建模相比的影响。所提出的模型开辟了建模的新视角,例如地壳的溶解和/或其热机械行为。地壳和水池材料的组成和热力学性质。在 IVR 策略的背景下,数值结果突出了瞬态真皮建模与静态建模相比的影响。所提出的模型开辟了建模的新视角,例如地壳的溶解和/或其热机械行为。
更新日期:2020-11-01
down
wechat
bug