当前位置: X-MOL 学术Biomater. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Laminin coated diamond electrodes for neural stimulation
Biomaterials Advances ( IF 5.5 ) Pub Date : 2020-08-27 , DOI: 10.1016/j.msec.2020.111454
Md.. Kabir Uddin Sikder , Wei Tong , Hitesh Pingle , Peter Kingshott , Karina Needham , Mohit N. Shivdasani , James B. Fallon , Peter Seligman , Michael R. Ibbotson , Steven Prawer , David J. Garrett

The performance of many implantable neural stimulation devices is degraded due to the loss of neurons around the electrodes by the body's natural biological responses to a foreign material. Coating of electrodes with biomolecules such as extracellular matrix proteins is one potential route to suppress the adverse responses that lead to loss of implant functionality. Concurrently, however, the electrochemical performance of the stimulating electrode must remain optimal to continue to safely provide sufficient charge for neural stimulation. We have previously found that oxygen plasma treated nitrogen included ultrananocrystalline diamond coated platinum electrodes exhibit superior charge injection capacity and electrochemical stability for neural stimulation (Sikder et al., 2019). To fabricate bioactive diamond electrodes, in this work, laminin, an extracellular matrix protein known to be involved in inter-neuron adhesion and recognition, was used as an example biomolecule. Here, laminin was covalently coupled to diamond electrodes. Electrochemical analysis found that the covalently coupled films were robust and resulted in minimal change to the charge injection capacity of diamond electrodes. The successful binding of laminin and its biological activity was further confirmed using primary rat cortical neuron cultures, and the coated electrodes showed enhanced cell attachment densities and neurite outgrowth. The method proposed in this work is versatile and adaptable to many other biomolecules for producing bioactive diamond electrodes, which are expected to show reduced the inflammatory responses in vivo.



中文翻译:

用于神经刺激的层粘连蛋白涂层金刚石电极

由于人体对异物的自然生物学反应,许多可植入神经刺激设备的性能由于电极周围神经元的丢失而降低。用生物分子(例如细胞外基质蛋白)涂覆电极是抑制导致植入物功能丧失的不良反应的一种潜在途径。然而,与此同时,刺激电极的电化学性能必须保持最佳状态,以继续为神经刺激安全地提供足够的电荷。我们之前已经发现,氧等离子体处理的氮包括超纳米晶金刚石涂层铂电极表现出优异的电荷注入能力和对神经刺激的电化学稳定性(Sikder et al。,2019)。为了制造具有生物活性的金刚石电极,在这项工作中,层粘连蛋白 一种已知参与神经元间粘附和识别的细胞外基质蛋白被用作示例生物分子。在这里,层粘连蛋白共价偶联至金刚石电极。电化学分析发现,共价偶联膜坚固耐用,对金刚石电极的电荷注入能力影响很小。使用原代大鼠皮层神经元培养物进一步证实了层粘连蛋白的成功结合及其生物学活性,并且包覆的电极显示出增强的细胞附着密度和神经突向外生长。在这项工作中提出的方法是通用的,并且适用于生产生物活性金刚石电极的许多其他生物分子,这些分子有望显示出减少的炎症反应 作为示例生物分子。在这里,层粘连蛋白共价偶联至金刚石电极。电化学分析发现,共价偶联膜坚固耐用,对金刚石电极的电荷注入能力影响很小。使用原代大鼠皮层神经元培养物进一步证实层粘连蛋白的成功结合及其生物学活性,并且包覆的电极显示出增强的细胞附着密度和神经突向外生长。在这项工作中提出的方法是通用的,并且适用于生产生物活性金刚石电极的许多其他生物分子,这些分子有望显示出减少的炎症反应 作为示例生物分子。在这里,层粘连蛋白共价偶联至金刚石电极。电化学分析发现,共价偶联膜坚固耐用,对金刚石电极的电荷注入能力影响很小。使用原代大鼠皮层神经元培养物进一步证实了层粘连蛋白的成功结合及其生物学活性,并且包覆的电极显示出增强的细胞附着密度和神经突向外生长。在这项工作中提出的方法是通用的,并且适用于生产生物活性金刚石电极的许多其他生物分子,这些分子有望显示出减少的炎症反应 电化学分析发现,共价偶联膜坚固耐用,对金刚石电极的电荷注入能力影响很小。使用原代大鼠皮层神经元培养物进一步证实了层粘连蛋白的成功结合及其生物学活性,并且包覆的电极显示出增强的细胞附着密度和神经突向外生长。在这项工作中提出的方法是通用的,并且适用于生产生物活性金刚石电极的许多其他生物分子,这些分子有望显示出减少的炎症反应 电化学分析发现,共价偶联膜坚固耐用,对金刚石电极的电荷注入能力影响很小。使用原代大鼠皮层神经元培养物进一步证实层粘连蛋白的成功结合及其生物学活性,并且包覆的电极显示出增强的细胞附着密度和神经突向外生长。在这项工作中提出的方法是通用的,并且适用于生产生物活性金刚石电极的许多其他生物分子,这些分子有望显示出减少的炎症反应体内

更新日期:2020-08-27
down
wechat
bug