当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal modeling of a high-energy prismatic lithium-ion battery cell and module based on a new thermal characterization methodology
Journal of Energy Storage ( IF 8.9 ) Pub Date : 2020-08-26 , DOI: 10.1016/j.est.2020.101707
Mohsen Akbarzadeh , Theodoros Kalogiannis , Joris Jaguemont , Jiacheng He , Lu Jin , Maitane Berecibar , Joeri Van Mierlo

Thermal management is crucial for lithium-ion batteries to ensure safe operation, high performance, and long lifetime. In this regard, the thermophysical properties of the batteries are key parameters for developing reliable and accurate thermal models. This study presents a new, simple, and cost-effective method for determination of heat capacity and anisotropic thermal conductivity of a commercial high energy density (43 Ah) prismatic-shape lithium-ion battery. The influence of various operating temperatures on thermal parameters is investigated. The predicted heat capacity and thermal conductivity are then used to simulate the battery cell temperature at a high current charge and discharge rate using a lumped thermal network and a three-dimensional (3D) thermal model at different environment temperatures. Additionally, the thermal behavior of a 48 V battery module consisting of 12 cells is simulated using a 3D thermal model at room temperature. Both cell and module level simulations are validated with experimental results obtained by thermocouples and a thermal camera. The thermal characterization results reveal that the heat capacity of the battery slightly increases as the operating temperature increases, while the thermal conductivity remains independent of the temperature. The comparison of simulation and experimental results indicate that the developed method in this study is a quick and practical way to accurately predict the thermophysical properties of the battery and contribute towards the thermal management of Li-ion modules and packs.



中文翻译:

基于新的热表征方法的高能方形锂离子电池和模块的热模型

热量管理对于锂离子电池确保安全操作,高性能和长寿命至关重要。在这方面,电池的热物理性质是开发可靠和准确的热模型的关键参数。这项研究提出了一种新的,简单的,具有成本效益的方法来确定商用高能量密度(43 Ah)棱柱形锂离子电池的热容量和各向异性热导率。研究了各种工作温度对热参数的影响。然后,使用集总热网络和不同环境温度下的三维(3D)热模型,将预测的热容量和热导率用于在高电流充电和放电速率下模拟电池单元温度。另外,在室温下使用3D热模型模拟了由12个电池组成的48 V电池模块的热行为。单元级和模块级仿真均通过热电偶和热像仪获得的实验结果进行了验证。热表征结果表明,电池的热容量随工作温度的升高而略有增加,而热导率则与温度无关。仿真和实验结果的比较表明,本研究中开发的方法是一种快速而实用的方法,可以准确地预测电池的热物理性质,并有助于锂离子模块和电池组的热管理。单元级和模块级仿真均通过热电偶和热像仪获得的实验结果进行了验证。热表征结果表明,电池的热容量随工作温度的升高而略有增加,而热导率则与温度无关。仿真和实验结果的比较表明,本研究中开发的方法是一种快速而实用的方法,可以准确地预测电池的热物理性质,并有助于锂离子模块和电池组的热管理。单元级和模块级仿真均通过热电偶和热像仪获得的实验结果进行了验证。热表征结果表明,电池的热容量随工作温度的升高而略有增加,而热导率则与温度无关。仿真和实验结果的比较表明,本研究中开发的方法是一种快速而实用的方法,可以准确地预测电池的热物理性质,并有助于锂离子模块和电池组的热管理。热表征结果表明,电池的热容量随工作温度的升高而略有增加,而热导率则与温度无关。仿真和实验结果的比较表明,本研究中开发的方法是一种快速而实用的方法,可以准确地预测电池的热物理性质,并有助于锂离子模块和电池组的热管理。热表征结果表明,电池的热容量随工作温度的升高而略有增加,而热导率则与温度无关。仿真和实验结果的比较表明,本研究中开发的方法是一种快速而实用的方法,可以准确地预测电池的热物理性质,并有助于锂离子模块和电池组的热管理。

更新日期:2020-08-26
down
wechat
bug