当前位置: X-MOL 学术J. Energy Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-situ construction of conducting alloy interphase towards modulating Li-ion storage kinetics
Journal of Energy Chemistry ( IF 14.0 ) Pub Date : 2020-08-27 , DOI: 10.1016/j.jechem.2020.08.031
Lingjie Li , Dandan Wang , Xiaoxia Xu , Xiaosong Guo , Jing Liu , Changming Mao , Zhonghua Zhang , Guicun Li

Interface engineering strategy shows great promise in promoting the reaction kinetic and cycling performance in the field of electrochemical energy storage application. In this work, an in-situ interface growth strategy is proposed to introduce a robust and conducting MoGe2 alloy interphase between the electrochemical active Ge nanoparticle and flexible MoS2 nanosheets to modulate their Li-ion storage kinetics. The structural evolution processes of the Ge@MoGe2@MoS2 composite are unraveled, during which the initially-generated Ge metals serve as a crucial reduction mediator in the formation of MoGe2 species bridging the Ge and MoS2. The as-generated MoGe2 interface, chemically bonding with both Ge and MoS2, possesses multi-fold merits, including the maintaining stable framework of electrochemically inactive Mo matrix to buffer the strain-stress effect and the “welding spot” effects to facilitate the efficient Li+/e conduction. As well, the introduction of MoGe2 interface leads to a unique sequential lithiation/de-lithiation process, namely in the order of the electrochemically active MoS2-MoGe2-Ge during lithiation and vice versa, during which the electrode strain could be more effectively released. Benefited from the robust and rigid MoGe2 interface, the delicately designed Ge@MoGe2@MoS2 composite exhibits an improved charge/discharge performances (866.7 mAh g−1 at 5.0 A g−1 and 838.5 mAh g−1 after 400 cycles) while showing a high tap density of 1.23 g cm−3. The as-proposed in-situ interface growth strategy paves a new avenue for designing novel high-performance electrochemical energy storage materials.



中文翻译:

导电合金相间原位构建以调节锂离子存储动力学

界面工程策略在提高电化学储能领域的反应动力学和循环性能方面具有广阔的前景。在这项工作中,提出了一种原位界面生长策略,以在电化学活性Ge纳米颗粒和柔性MoS 2纳米片之间引入一种坚固且导电的MoGe 2合金界面相,以调节其锂离子存储动力学。揭示了Ge @ MoGe 2 @MoS 2复合材料的结构演化过程,在此过程中,最初生成的Ge金属在桥接Ge和MoS 2的MoGe 2物种的形成中起着至关重要的还原介质的作用。生成的MoGe与Ge和MoS 2均化学键合的2界面具有多重优点,包括保持电化学惰性Mo基质的稳定框架以缓冲应变应力效应和“焊点”效应以促进有效的Li + / e 传导。同样,MoGe 2界面的引入导致独特​​的顺序锂化/去锂化过程,即在锂化过程中以电化学活性MoS 2 -MoGe 2 -Ge的顺序,反之亦然,在此期间电极应变可能更大。有效发布。精心设计的Ge @ MoGe得益于坚固耐用的MoGe 2接口2个@MoS 2只复合物表现出一种改进的充/放电性能(866.7毫安克-1 5.0 A G -1和838.5毫安克-1 400次循环后),而表示1.23克cm的高振实密度-3。拟议的原位界面生长策略为设计新型高性能电化学储能材料开辟了一条新途径。

更新日期:2020-08-27
down
wechat
bug