当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Algorithms for Brownian dynamics across discontinuities
Journal of Computational Physics ( IF 4.1 ) Pub Date : 2020-08-27 , DOI: 10.1016/j.jcp.2020.109802
Oded Farago

The problem of mass diffusion in layered systems has relevance to applications in different scientific disciplines, e.g., chemistry, material science, soil science, and biomedical engineering. The mathematical challenge in these type of model systems is to match the solutions of the time-dependent diffusion equation in each layer, such that the boundary conditions at the interfaces between them are satisfied. As the number of layers increases, the solutions may become increasingly complicated. Here, we describe an alternative computational approach to multi-layer diffusion problems, which is based on the description of the overdamped Brownian motion of particles via the underdamped Langevin equation. In this approach, the probability distribution function is computed from the statistics of an ensemble of independent single particle trajectories. To allow for simulations of Langevin dynamics in layered systems, the numerical integrator must be supplemented with algorithms for the transitions across the discontinuous interfaces. Algorithms for three common types of discontinuities are presented: (i) A discontinuity in the friction coefficient, (ii) a semi-permeable membrane, and (iii) a step-function chemical potential. The general case of an interface where all three discontinuities are present (Kedem-Katchalsky boundary) is also discussed. We demonstrate the validity and accuracy of the derived algorithms by considering a simple two-layer model system and comparing the Langevin dynamics statistics with analytical solutions and alternative computational results.



中文翻译:

跨不连续性的布朗动力学算法

分层系统中的质量扩散问题与化学,材料科学,土壤科学和生物医学工程等不同科学领域的应用相关。在这些类型的模型系统中,数学上的挑战是匹配每一层中随时间变化的扩散方程的解,以使它们之间的界面处的边界条件得到满足。随着层数的增加,解决方案可能变得越来越复杂。在这里,我们描述了一种针对多层扩散问题的替代计算方法,该方法基于通过欠阻尼Langevin方程描述的过阻尼粒子布朗运动。在这种方法中,概率分布函数是根据独立的单个粒子轨迹的集合的统计数据来计算的。为了在分层系统中模拟Langevin动力学,必须为数值积分器补充算法,以实现不连续界面的过渡。提出了三种常见的不连续性类型的算法:(i)摩擦系数的不连续性;(ii)半透膜;以及(iii)阶跃函数化学势。还讨论了所有三个不连续面(Kedem-Katchalsky边界)都存在的界面的一般情况。通过考虑一个简单的两层模型系统,并将Langevin动力学统计数据与解析解和替代计算结果进行比较,我们证明了衍生算法的有效性和准确性。数字积分器必须通过不连续界面的过渡算法进行补充。提出了三种常见的不连续性类型的算法:(i)摩擦系数的不连续性;(ii)半透膜;以及(iii)阶跃函数化学势。还讨论了所有三个不连续面(Kedem-Katchalsky边界)都存在的界面的一般情况。通过考虑一个简单的两层模型系统,并将Langevin动力学统计数据与解析解和替代计算结果进行比较,我们证明了衍生算法的有效性和准确性。数字积分器必须通过不连续界面的过渡算法进行补充。提出了三种常见的不连续性类型的算法:(i)摩擦系数的不连续性;(ii)半透膜;以及(iii)阶跃函数化学势。还讨论了所有三个不连续面都存在的界面(Kedem-Katchalsky边界)的一般情况。通过考虑一个简单的两层模型系统,并将Langevin动力学统计数据与解析解和替代计算结果进行比较,我们证明了衍生算法的有效性和准确性。(ii)半透膜,和(iii)阶跃函数化学势。还讨论了所有三个不连续面(Kedem-Katchalsky边界)都存在的界面的一般情况。通过考虑一个简单的两层模型系统,并将Langevin动力学统计数据与解析解和替代计算结果进行比较,我们证明了衍生算法的有效性和准确性。(ii)半透膜,和(iii)阶跃函数化学势。还讨论了所有三个不连续面(Kedem-Katchalsky边界)都存在的界面的一般情况。通过考虑一个简单的两层模型系统,并将Langevin动力学统计数据与解析解和替代计算结果进行比较,我们证明了衍生算法的有效性和准确性。

更新日期:2020-08-27
down
wechat
bug