当前位置: X-MOL 学术Adv. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Lucas atoms
Advances in Mathematics ( IF 1.5 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.aim.2020.107387
Bruce E. Sagan , Jordan Tirrell

Given two variables $s$ and $t$, the associated sequence of Lucas polynomials is defined inductively by $\{0\}=0$, $\{1\}=1$, and $\{n\}=s\{n-1\}+t\{n-2\}$ for $n\ge2$. An integer (e.g., a Catalan number) defined by an expression of the form $\prod_i n_i/\prod_j k_j$ has a Lucas analogue obtained by replacing each factor with the corresponding Lucas polynomial. There has been interest in deciding when such expressions, which are a priori only rational functions, are actually polynomials in $s,t$. The approaches so far have been combinatorial. We introduce a powerful algebraic method for answering this question by factoring $\{n\}=\prod_{d|n} P_d(s,t)$, where we call the polynomials $P_d(s,t)$ Lucas atoms. This permits us to show that the Lucas analogues of the Fuss-Catalan and Fuss-Narayana numbers for all irreducible Coxeter groups are polynomials in $s,t$. Using gamma expansions, a technique which has recently become popular in combinatorics and geometry, one can show that the Lucas atoms have a close relationship with cyclotomic polynomials $\Phi_d(q)$. Certain results about the $\Phi_d(q)$ can then be lifted to Lucas atoms. In particular, one can prove analogues of theorems of Gauss and Lucas, deduce reduction formulas, and evaluate the $P_d(s,t)$ at various specific values of the variables.

中文翻译:

卢卡斯原子

给定两个变量 $s$ 和 $t$,相关联的 Lucas 多项式序列由 $\{0\}=0$、$\{1\}=1$ 和 $\{n\}=s 归纳定义\{n-1\}+t\{n-2\}$ 为 $n\ge2$。由形式$\prod_i n_i/\prod_j k_j$ 的表达式定义的整数(例如,加泰罗尼亚数)具有通过用相应的卢卡斯多项式替换每个因子而获得的卢卡斯模拟。有兴趣决定这些表达式,它们是先验的只有有理函数,实际上是 $s,t$ 中的多项式。迄今为止的方法是组合的。我们通过分解 $\{n\}=\prod_{d|n} P_d(s,t)$ 引入了一种强大的代数方法来回答这个问题,我们将多项式称为 $P_d(s,t)$ Lucas 原子。这使我们能够证明所有不可约 Coxeter 群的 Fuss-Catalan 和 Fuss-Narayana 数的 Lucas 类似物是 $s,t$ 中的多项式。使用伽马展开式,一种最近在组合学和几何学中流行的技术,可以证明卢卡斯原子与分圆多项式 $\Phi_d(q)$ 有着密切的关系。然后可以将有关 $\Phi_d(q)$ 的某些结果提升到 Lucas 原子。特别是,可以证明 Gauss 和 Lucas 定理的类似物,推导出约简公式,并在变量的各种特定值处评估 $P_d(s,t)$。然后可以将有关 $\Phi_d(q)$ 的某些结果提升到 Lucas 原子。特别是,可以证明 Gauss 和 Lucas 定理的类似物,推导出约简公式,并在变量的各种特定值处评估 $P_d(s,t)$。然后可以将有关 $\Phi_d(q)$ 的某些结果提升到 Lucas 原子。特别是,可以证明 Gauss 和 Lucas 定理的类似物,推导出约简公式,并在变量的各种特定值处评估 $P_d(s,t)$。
更新日期:2020-11-01
down
wechat
bug