当前位置: X-MOL 学术Pet. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shale gas reservoir modeling and production evaluation considering complex gas transport mechanisms and dispersed distribution of kerogen
Petroleum Science ( IF 6.0 ) Pub Date : 2020-08-26 , DOI: 10.1007/s12182-020-00495-1
Jie Zeng , Jishan Liu , Wai Li , Yee-Kwong Leong , Derek Elsworth , Jianchun Guo

Stimulated shale reservoirs consist of kerogen, inorganic matter, secondary and hydraulic fractures. The dispersed distribution of kerogen within matrices and complex gas flow mechanisms make production evaluation challenging. Here we establish an analytical method that addresses kerogen-inorganic matter gas transfer, dispersed kerogen distribution, and complex gas flow mechanisms to facilitate evaluating gas production. The matrix element is defined as a kerogen core with an exterior inorganic sphere. Unlike most previous models, we merely use boundary conditions to describe kerogen-inorganic matter gas transfer without the instantaneous kerogen gas source term. It is closer to real inter-porosity flow conditions between kerogen and inorganic matter. Knudsen diffusion, surface diffusion, adsorption/desorption, and slip corrected flow are involved in matrix gas flow. Matrix-fracture coupling is realized by using a seven-region linear flow model. The model is verified against a published model and field data. Results reveal that inorganic matrices serve as a major gas source especially at early times. Kerogen provides limited contributions to production even under a pseudo-steady state. Kerogen properties’ influence starts from the late matrix-fracture inter-porosity flow regime, while inorganic matter properties control almost all flow regimes except the early-mid time fracture linear flow regime. The contribution of different linear flow regions is also documented.



中文翻译:

考虑复杂的输气机理和干酪根分散分布的页岩气藏建模与生产评价

受压页岩储集层由干酪根,无机质,二次裂缝和水力裂缝组成。干酪根在基质中的分散分布和复杂的气体流动机制使生产评估面临挑战。在这里,我们建立了一种分析方法,解决了干酪根-无机物气体的转移,分散的干酪根分布以及复杂的气体流动机制,从而有助于评估气体的产生。基质元素定义为具有外部无机球的干酪根核心。与大多数以前的模型不同,我们仅使用边界条件来描述干酪根-无机物气体的转移,而没有瞬时干酪根气体源项。它更接近干酪根和无机物之间的真实孔隙间流动条件。努森扩散,表面扩散,吸附/解吸,气体校正过程中涉及的流量和打滑校正流量。矩阵-断裂耦合是通过使用七区域线性流模型实现的。对照发布的模型和现场数据验证模型。结果表明,无机基质是主要的气体来源,尤其是在早期。即使在伪稳态下,干酪根对生产的贡献也有限。干酪根性质的影响始于后期基质-裂缝间孔隙流态,而无机物质性质控制着除早期-中期裂缝线性流态外的几乎所有流态。还记录了不同线性流动区域的贡献。结果表明,无机基质是主要的气体来源,尤其是在早期。即使在伪稳态下,干酪根对生产的贡献有限。干酪根性质的影响始于后期基质-裂缝间孔隙流态,而无机物质性质控制着除早期-中期裂缝线性流态外的几乎所有流态。还记录了不同线性流动区域的贡献。结果表明,无机基质是主要的气体来源,尤其是在早期。即使在伪稳态下,干酪根对生产的贡献也有限。干酪根性质的影响始于后期基质-裂缝间孔隙流态,而无机物质性质控制着除早期-中期裂缝线性流态外的几乎所有流态。还记录了不同线性流动区域的贡献。

更新日期:2020-08-27
down
wechat
bug