当前位置: X-MOL 学术J. Polym. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Polycarbazole and its derivatives: progress, synthesis, and applications
Journal of Polymer Research ( IF 2.8 ) Pub Date : 2020-08-27 , DOI: 10.1007/s10965-020-02254-7
V. Nayana , Balasubramanian Kandasubramanian

Polycarbazole and its derivatives encompass nitrogen-containing aromatic heterocyclic conducting polymers having excellent optoelectronic properties, high charge carrier mobility, and excellent morphological stability, which make them potential candidates in the field of nanodevices, rechargeable batteries and electrochemical transistors. Engrossingly, carbazole moieties can be electropolymerized in two different methods resulting in the formation of poly(2,7-carbazole)s or poly(3,6-carbazole)s derivatives because the 2,7 and 3,6 positions are more active than the others. The fundamental difference between these two polymers is in the bandgap energies and effectual conjugation length. Poly(2,7-carbazole) exhibits more extended conjugation length because of the presence of lower bandgap energy values and the presence of poly para phenylene (PPP) like structure. The pysico-chemical characteristics of the polymers, revamped by employing substituents at various positions and synthetic methods, leading to the generation of highly efficient materials for a wide range of optoelectronic applications. At present, much intrinsically conducting polymers (ICPs) like polythiophene (PT), poly (p-phenylene) (PPP), polypyrrole (PPY), and polyaniline (PANI) have been diligently investigated. Among these carbazole units are more advantageous because of their intriguing properties includes the presence of bridged biphenyl unit providing a material with a lower bandgap, the inexpensive raw material (9H-carbazole), and the natural functionalizing ability of nitrogen atom. The predominant objective of this review is to effectuate a comprehensive study of carbazole based conducting polymers, its derivatives, applications, and various synthesis methods.



中文翻译:

聚咔唑及其衍生物:进展,合成和应用

聚咔唑及其衍生物包括具有优异的光电性能,高的载流子迁移率和优异的形态稳定性的含氮芳族杂环导电聚合物,这使其成为纳米器件,可再充电电池和电化学晶体管领域的潜在候选者。令人着迷的是,咔唑基团可以用两种不同的方法进行电聚合,从而形成聚(2,7-咔唑)或聚(3,6-咔唑)衍生物,因为2,7和3,6位比其他。这两种聚合物之间的根本区别在于带隙能和有效的共轭长度。聚(2,7-咔唑)由于较低的带隙能值和类似聚对亚苯基(PPP)的结构而具有更长的共轭长度。通过在不同位置使用取代基和合成方法来改善聚合物的药理化学特性,从而导致产生了适用于各种光电应用的高效材料。目前,已经对诸如聚噻吩(PT),聚对苯撑(PPP),聚吡咯(PPY)和聚苯胺(PANI)等许多本征导电聚合物(ICP)进行了认真研究。这些咔唑单元之所以更具优势,是因为它们的引人入胜的特性包括存在桥联联苯单元,从而为材料提供了较低的带隙,廉价的原料(9H-咔唑),和氮原子的自然功能化能力。这篇综述的主要目的是对咔唑类导电聚合物,其衍生物,应用和各种合成方法进行全面的研究。

更新日期:2020-08-27
down
wechat
bug