当前位置: X-MOL 学术Adsorption › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intercalation and release of an anti-inflammatory drug into designed three-dimensionally layered double hydroxide nanostructure via calcination–reconstruction route
Adsorption ( IF 3.0 ) Pub Date : 2020-03-10 , DOI: 10.1007/s10450-020-00217-4
Elham Mansouri , Vahideh Tarhriz , Vahid Yousefi , Azita Dilmaghani

Synthesis and application of layered nanomaterials are known as emerging field in nanotechnology. Inorganic layered nanomaterials with nanometer scale, high aspect ratios, and large-surface area generate various scientific and technological interests in several potential areas of application such as separation technology, medical sciences, chromatography drug delivery, and catalysis. In this research, naproxen was opted as a unique model of the drug to intercalate into three-dimensional layered double hydroxide (LDH) nanostructures by calcination–reconstruction method. The designed-naproxen nanostructures were synthesized and used as novel drug nanocarriers. The synthesized nanomaterial characteristics were confirmed by FTIR, XRD, and SEM. The results of antibacterial activity indicated that homemade nanostructure can inhibit bacterial growth. Furthermore, MTT assay analysis showed that synthesized-nanostructure in physiological concentration has not cytotoxicity on C2C12 myoblast cells in vitro. Subsequent to intercalation with naproxen according to calcination–reconstruction method, the basal spacing of LDH increased to 2.62 nm from primary 0.77 nm in diameter, which confirms successful intercalation of naproxen into inserted layer of LDH by bridging interaction. Also, in-vitro drug release tests in PBS (pH 7.4) showed constant release profile for naproxen. Consequently, due to the facile and low-cost fabrication of three-dimensional LDH nanostructure, it can be considered as a potential alternative for traditional and high cost drug delivery.

中文翻译:

通过煅烧-重构途径将消炎药嵌入并释放到设计的三维层状双氢氧化物纳米结构中

层状纳米材料的合成和应用是纳米技术中的新兴领域。具有纳米级,高长宽比和大表面积的无机层状纳米材料在分离技术,医学,色谱药物传递和催化等若干潜在应用领域中产生了各种科学技术兴趣。在这项研究中,萘普生被选为该药物的独特模型,可通过煅烧-重建方法插入三维三维双层氢氧化物(LDH)纳米结构中。合成了设计的萘普生纳米结构,并用作新型药物纳米载体。FTIR,XRD和SEM证实了合成的纳米材料的特性。抗菌活性的结果表明,自制的纳米结构可以抑制细菌的生长。此外,MTT测定分析表明,在生理浓度下合成的纳米结构在体外对C2C12成肌细胞没有细胞毒性。根据煅烧-重建方法插入萘普生后,LDH的基距从直径0.77 nm增加到2.62 nm,这证明通过桥接相互作用将萘普生成功插入到LDH的插入层中。同样,在PBS(pH 7.4)中进行的体外药物释放测试显示了萘普生的恒定释放曲线。因此,由于三维LDH纳米结构的简便,低成本制造,它可以被视为传统和高成本药物递送的潜在替代品。MTT测定分析表明,在生理浓度下合成的纳米结构在体外对C2C12成肌细胞没有细胞毒性。根据煅烧-重建方法插入萘普生后,LDH的基距从直径0.77 nm增加到2.62 nm,这证明通过桥接相互作用将萘普生成功插入到LDH的插入层中。同样,在PBS(pH 7.4)中进行的体外药物释放测试显示了萘普生的恒定释放曲线。因此,由于三维LDH纳米结构的简便,低成本制造,它可以被视为传统和高成本药物递送的潜在替代品。MTT测定分析表明,在生理浓度下合成的纳米结构在体外对C2C12成肌细胞没有细胞毒性。根据煅烧-重建方法插入萘普生后,LDH的基距从直径0.77 nm增加到2.62 nm,这证明通过桥接相互作用将萘普生成功插入到LDH的插入层中。同样,在PBS(pH 7.4)中进行的体外药物释放测试显示了萘普生的恒定释放曲线。因此,由于三维LDH纳米结构的简便,低成本制造,它可以被视为传统和高成本药物递送的潜在替代品。从主直径0.77 nm到62 nm,这证实了萘普生通过桥接相互作用成功插入到LDH的插入层中。同样,在PBS(pH 7.4)中进行的体外药物释放测试显示了萘普生的恒定释放曲线。因此,由于三维LDH纳米结构的简便,低成本制造,它可以被视为传统和高成本药物递送的潜在替代品。从主直径0.77 nm到62 nm,这证实了萘普生通过桥接相互作用成功插入到LDH的插入层中。同样,在PBS(pH 7.4)中进行的体外药物释放测试显示了萘普生的恒定释放曲线。因此,由于三维LDH纳米结构的简便,低成本制造,它可以被视为传统和高成本药物递送的潜在替代品。
更新日期:2020-03-10
down
wechat
bug