当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Assessing the defect tolerance of kesterite-inspired solar absorbers
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-08-25 , DOI: 10.1039/d0ee02177f
Andrea Crovetto 1, 2, 3, 4, 5 , Sunghyun Kim 6, 7, 8, 9 , Moritz Fischer 3, 4, 5, 10, 11 , Nicolas Stenger 3, 4, 5, 10, 11 , Aron Walsh 6, 7, 8, 9, 12 , Ib Chorkendorff 1, 2, 3, 4, 5 , Peter C. K. Vesborg 1, 2, 3, 4, 5
Affiliation  

Various thin-film I2–II–IV–VI4 photovoltaic absorbers derived from kesterite Cu2ZnSn(S,Se)4 have been synthesized, characterized, and theoretically investigated in the past few years. The availability of this homogeneous materials dataset is an opportunity to examine trends in their defect properties and identify criteria to find new defect-tolerant materials in this vast chemical space. We find that substitutions on the Zn site lead to a smooth decrease in band tailing as the ionic radius of the substituting cation increases. Unfortunately, this substitution strategy does not ensure the suppression of deeper defects and non-radiative recombination. Trends across the full dataset suggest that Gaussian and Urbach band tails in kesterite-inspired semiconductors are two separate phenomena caused by two different antisite defect types. Deep Urbach tails are correlated with the calculated band gap narrowing caused by the (2III + IVII) defect cluster. Shallow Gaussian tails are correlated with the energy difference between the kesterite and stannite polymorphs, which points to the role of (III + III) defect clusters involving Group IB and Group IIB atoms swapping across different cation planes. This finding can explain why in-plane cation disorder and band tailing are uncorrelated in kesterites. Our results provide quantitative criteria for discovering new kesterite-inspired photovoltaic materials with low band tailing.

中文翻译:

评估由硅藻土启发的太阳能吸收器的缺陷耐受性

衍生自Kesterite Cu 2 ZnSn(S,Se)4的各种薄膜I 2 –II–IV–VI 4光伏吸收剂在过去的几年中,已经合成,表征并从理论上进行了研究。该均质材料数据集的可用性为检查其缺陷特性趋势和确定标准以在广阔的化学空间中寻找新的耐缺陷材料提供了机会。我们发现,随着取代阳离子的离子半径的增加,Zn位点上的取代会导致谱带拖尾的平滑下降。不幸的是,这种替代策略不能确保抑制更深的缺陷和非辐射重组。整个数据集上的趋势表明,由钾石矿启发的半导体中的高斯带和Urbach带尾是由两种不同的反位缺陷类型引起的两种不同的现象。较深的Urbach尾部与(2III + IV II)缺陷簇。浅高斯尾部与硅藻土和锡矿多晶型物之间的能量差相关,这表明(I II + II I)缺陷簇的作用涉及IB组和IIB组原子在不同的阳离子平面上交换。这一发现可以解释为什么在钾钛矿中面内阳离子紊乱和带拖尾是不相关的。我们的结果提供了定量标准,以发现具有低能带拖尾的新型硅藻土启发型光伏材料。
更新日期:2020-10-14
down
wechat
bug