当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficiency of Hot-Electron Generation in Plasmonic Nanocrystals with Complex Shapes: Surface-Induced Scattering, Hot Spots, and Interband Transitions
ACS Photonics ( IF 6.5 ) Pub Date : 2020-08-25 , DOI: 10.1021/acsphotonics.0c01065
Eva Yazmin Santiago 1 , Lucas V. Besteiro 2, 3 , Xiang-Tian Kong 4 , Miguel A. Correa-Duarte 5, 6 , Zhiming Wang 2 , Alexander O. Govorov 1, 2
Affiliation  

The generation of hot electrons is an intrinsic property of all plasmonic nanocrystals under illumination. However, the number of such excited electrons will strongly depend on the shape, material, and excitation wavelength. In this paper, we develop a practical self-consistent formalism to describe the generation of energetic electrons in a plasmonic nanocrystal with an arbitrary shape. We apply our formalism to gold nanospheres, nanorods, and nanostars. Among the investigated shapes, the nanostar geometry demonstrates the best performance, with an internal energy efficiency of ∼25%. This superior capability of hot-electron generation in the nanostars comes from the following factors: strong hot spots in the red spectral region, isotropic optical response, and the absence of interband transitions at the plasmonic resonance. Spherical gold nanocrystals show strong interband absorption at the plasmon resonance, and the related efficiency of the generation of hot holes in the d band can reach a level of 70%. By analyzing the energy performance of nanocrystals under CW illumination, we show that the most relevant parameter to consider is the rate of hot-electron generation, whereas the steady-state numbers of thermalized and nonthermalized electrons play secondary roles. The physical principles formulated in this study can be used to design a variety of plasmonic nanomaterials for applications in photocatalysis and photodetection.

中文翻译:

具有复杂形状的等离子体纳米晶体中热电子产生的效率:表面感应散射,热点和带间跃迁

在照射下,热电子的产生是所有等离子体纳米晶体的固有特性。但是,这种激发电子的数量将在很大程度上取决于形状,材料和激发波长。在本文中,我们开发了一种实用的自洽形式学来描述具有任意形状的等离子体纳米晶体中高能电子的产生。我们将形式主义应用于金纳米球,纳米棒和纳米星。在研究的形状中,纳米星的几何形状表现出最佳性能,内部能效约为25%。纳米星中这种热电子产生的卓越能力来自以下因素:红色光谱区中的强热点,各向同性的光学响应以及在等离子体共振时不存在带间跃迁。球形金纳米晶体在等离振子共振处显示出较强的带间吸收,并且在d波段产生热空穴的相关效率可以达到70%的水平。通过分析连续波照明下的纳米晶体的能量性能,我们表明,要考虑的最相关的参数是热电子产生的速率,而热化和非热化电子的稳态数起次要作用。在这项研究中制定的物理原理可用于设计用于光催化和光检测的各种等离子体纳米材料。我们表明,要考虑的最相关的参数是热电子产生的速率,而热化和非热化电子的稳态数起次要作用。在这项研究中制定的物理原理可用于设计用于光催化和光检测的各种等离子体纳米材料。我们表明,要考虑的最相关的参数是热电子产生的速率,而热化和非热化电子的稳态数起次要作用。在这项研究中制定的物理原理可用于设计用于光催化和光检测的各种等离子体纳米材料。
更新日期:2020-10-21
down
wechat
bug