当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum thermodynamics in adiabatic open systems and its trapped-ion experimental realization
npj Quantum Information ( IF 6.6 ) Pub Date : 2020-08-26 , DOI: 10.1038/s41534-020-00300-2
Chang-Kang Hu , Alan C. Santos , Jin-Ming Cui , Yun-Feng Huang , Diogo O. Soares-Pinto , Marcelo S. Sarandy , Chuan-Feng Li , Guang-Can Guo

Quantum thermodynamics aims at investigating both the emergence and the limits of the laws of thermodynamics from a quantum mechanical microscopic approach. In this scenario, thermodynamic processes with no heat exchange, namely, adiabatic transformations, can be implemented through quantum evolutions in closed systems, even though the notion of a closed system is always an idealization and approximation. Here, we begin by theoretically discussing thermodynamic adiabatic processes in open quantum systems, which evolve non-unitarily under decoherence due to its interaction with its surrounding environment. From a general approach for adiabatic non-unitary evolution, we establish heat and work in terms of the underlying Liouville superoperator governing the quantum dynamics. As a consequence, we derive the conditions that an adiabatic open-system quantum dynamics implies in the absence of heat exchange, providing a connection between quantum and thermal adiabaticity. Moreover, we determine families of decohering systems exhibiting the same maximal heat exchange, which imply in classes of thermodynamic adiabaticity in open systems. We then approach the problem experimentally using a hyperfine energy-level quantum bit of an Ytterbium 171Yb+ trapped ion, which provides a work substance for thermodynamic processes, allowing for the analysis of heat and internal energy throughout a controllable engineered dynamics.



中文翻译:

绝热开放系统中的量子热力学及其俘获离子的实验实现

量子热力学旨在从量子力学微观方法研究热力学定律的出现和极限。在这种情况下,即使封闭系统的概念始终是理想化和近似的,也可以通过量子演化在封闭系统中实现没有热交换的热力学过程,即绝热转化。在这里,我们从理论上讨论开放量子系统中的热力学绝热过程,该过程由于与其周围环境的相互作用而在退相干下非单一地演化。从绝热非-元演化的一般方法出发,我们根据控制量子动力学的基本Liouville超级算子建立了热和功。作为结果,我们得出了绝热开放系统量子动力学在没有热交换的情况下所暗示的条件,从而提供了量子绝热与热绝热之间的联系。此外,我们确定显示相同热交换的解耦系统族,这暗示着开放系统中热力学绝热的类别。然后,我们使用an的超精细能级量子位以实验方式解决该问题171 Yb +捕获的离子,为热力学过程提供了一种工作物质,可以在可控的工程动力学范围内分析热量和内部能量。

更新日期:2020-08-26
down
wechat
bug