当前位置: X-MOL 学术Eng. Appl. Artif. Intell. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Background image-assisted divide-and-conquer reconstruction method for ECT
Engineering Applications of Artificial Intelligence ( IF 7.5 ) Pub Date : 2020-08-26 , DOI: 10.1016/j.engappai.2020.103906
J. Lei , Q.B. Liu

Electrical capacitance tomography (ECT) is a potential image-based measurement technology for monitoring time-varying industrial processes, but its applicability is challenged by low-quality images. To address this conundrum, a two-stage reconstruction (TSR) method with more effective priors and optimizer is presented in this work. In the first stage, the random vector functional link network (RVFLN) is developed to calculate a data-dependent background image, and a new distributed computing method is developed to achieve efficient training. To decrease the expensive computation load in the RVFLN training, the regularized projective nonnegative matrix factorization (RPNMF) method is developed to diminish the size of the sample data. A new optimization problem (OP) is proposed to model the RPNMF problem, which is solved by a new optimizer efficiently. In the second stage, a new OP that achieves the confluence of the domain knowledge-based prior related to imaging objects and the measurement physics is built, and a new divide-and-conquer optimizer is devised to solve the OP. To reduce the difficulty of parameter adjustment, the background image is used to initialize the proposed computing algorithm, and such treatment not only achieves the simultaneous fusion of the domain knowledge-based prior and the data-dependent prior but also decreases the computational difficulty. Numerical results show that the TSR algorithm is not only robust but also can achieve high precision reconstruction in comparison with popular imaging techniques.



中文翻译:

ECT的背景图像辅助分治法重建方法

电容层析成像(ECT)是一种用于监视时变工业过程的基于图像的潜在测量技术,但其适用性受到低质量图像的挑战。为了解决这个难题,本文提出了一种具有更有效先验和优化器的两阶段重构(TSR)方法。在第一阶段,开发了随机矢量功能链接网络(RVFLN)以计算数据相关的背景图像,并开发了一种新的分布式计算方法以实现有效的训练。为了减少RVFLN训练中的昂贵计算量,开发了正则投影非负矩阵分解(RPNMF)方法以减小样本数据的大小。提出了一个新的优化问题(OP)来建模RPNMF问题,这是由新的优化程序有效解决的。在第二阶段中,构建了一个新的OP,该OP实现了与成像对象和测量物理相关的基于领域知识的先验技术的融合,并设计了一个新的分而治之优化器来解决该OP。为了减少参数调整的难度,背景图像被用来初始化所提出的计算算法,这种处理不仅实现了基于领域知识的先验和数据依赖的先验的同时融合,而且降低了计算难度。数值结果表明,与常用的成像技术相比,TSR算法不仅鲁棒性强,而且可以实现高精度的重构。建立了一个新的OP,该OP实现了与成像对象和测量物理相关的基于领域知识的先验的融合,并且设计了一个新的分而治之优化器来解决该OP。为了减少参数调整的难度,背景图像被用来初始化所提出的计算算法,这种处理不仅实现了基于领域知识的先验和数据依赖的先验的同时融合,而且降低了计算难度。数值结果表明,与常用的成像技术相比,TSR算法不仅鲁棒性强,而且可以实现高精度的重构。建立了一个新的OP,该OP实现了与成像对象和测量物理相关的基于领域知识的先验的融合,并且设计了一个新的分而治之优化器来解决该OP。为了减少参数调整的难度,背景图像被用来初始化所提出的计算算法,这种处理不仅实现了基于领域知识的先验和数据依赖的先验的同时融合,而且降低了计算难度。数值结果表明,与常用的成像技术相比,TSR算法不仅鲁棒性强,而且可以实现高精度的重构。背景图像用于初始化所提出的计算算法,这种处理不仅实现了基于领域知识的先验和基于数据的先验的同时融合,而且降低了计算难度。数值结果表明,与常用的成像技术相比,TSR算法不仅鲁棒性强,而且可以实现高精度的重构。背景图像用于初始化所提出的计算算法,这种处理不仅实现了基于领域知识的先验和基于数据的先验的同时融合,而且降低了计算难度。数值结果表明,与常用的成像技术相比,TSR算法不仅鲁棒性强,而且可以实现高精度的重构。

更新日期:2020-08-26
down
wechat
bug