当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Protein-based flexible thermal conductive materials with continuous network structure: Fabrication, properties, and theoretical modeling
Composites Part B: Engineering ( IF 12.7 ) Pub Date : 2020-08-26 , DOI: 10.1016/j.compositesb.2020.108377
Ye Xue , Samuel Lofland , Xiao Hu

Protein is an ideal alternative to many synthetic components in green and bio-electronic products due to its natural abundance, high flexibility and excellent biocompatibility. Here, we report the development of new renewable thermal management materials based on a stable composite system of biocompatible silk fibroin (SF) protein with a small amount (≤25 vol%) of AlN inclusions. The self-assembly of AlN particles and SF was promoted by water annealing to enhance the hydrogen bonding between the phases to reduce the phonon scattering at the interface. The synthesized protein composites have excellent thermal stability, high mechanical durability and low linear expansion, related in part to the secondary structure of silk protein which can be modulated by changing the AlN content. The physical properties were analyzed and modeled within effective medium theory, and the agreements were reasonable, except for the thermal conductivity which was surprisingly much larger than predicted by the model (e.g. 5 times greater at 15 vol%), which is attributed to the strong interaction between protein and AlN, the high thermal conductivity of AlN, and the continuous network of AlN particles that formed at higher concentrations. This makes proteins excellent candidates for thermally conductive composite materials, which have many emerging applications in implantable biomedical devices, flexible and sustainable sensors, and green heat transfer products.



中文翻译:

具有连续网络结构的蛋白质基柔性导热材料:制造,性能和理论建模

蛋白质由于其天然丰度,高柔韧性和出色的生物相容性,是绿色和生物电子产品中许多合成成分的理想替代品。在此,我们报告了基于稳定的生物相容性丝素蛋白(SF)蛋白与少量(≤25 vol%)AlN夹杂物的复合系统开发的新型可再生热管理材料。水退火可促进AlN颗粒和SF的自组装,以增强相之间的氢键,从而减少界面处的声子散射。合成的蛋白质复合材料具有出色的热稳定性,高机械耐久性和低线性膨胀性,部分与可以通过改变AlN含量来调节的丝蛋白的二级结构有关。在有效的介质理论中对物理性质进行了分析和建模,并且协议是合理的,除了导热系数出乎意料地比模型预测的大得多(例如,在15%的体积下,导热系数大了5倍),这归因于蛋白质与AlN之间的相互作用,AlN的高导热性以及在较高浓度下形成的AlN颗粒的连续网络。这使蛋白质成为导热复合材料的理想候选材料,导热复合材料在可植入生物医学设备,柔性和可持续传感器以及绿色传热产品中具有许多新兴应用。这归因于蛋白质与AlN之间的强相互作用,AlN的高热导率以及在较高浓度下形成的AlN颗粒的连续网络。这使蛋白质成为导热复合材料的理想候选材料,导热复合材料在可植入生物医学设备,柔性和可持续传感器以及绿色传热产品中具有许多新兴应用。这归因于蛋白质与AlN之间的强相互作用,AlN的高热导率以及在较高浓度下形成的AlN颗粒的连续网络。这使蛋白质成为导热复合材料的极佳候选材料,导热复合材料在可植入生物医学设备,柔性和可持续传感器以及绿色传热产品中具有许多新兴应用。

更新日期:2020-09-03
down
wechat
bug