当前位置: X-MOL 学术Sci. China Phys. Mech. Astronomy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced entanglement and asymmetric EPR steering between magnons
Science China Physics, Mechanics & Astronomy ( IF 6.4 ) Pub Date : 2020-08-20 , DOI: 10.1007/s11433-020-1587-5
Sha-Sha Zheng , Feng-Xiao Sun , Huai-Yang Yuan , Zbigniew Ficek , Qi-Huang Gong , Qiong-Yi He

The generation and manipulation of strong entanglement and Einstein-Podolsky-Rosen (EPR) steering in macroscopic systems are outstanding challenges in modern physics. Especially, the observation of asymmetric EPR steering is important for both its fundamental role in interpreting the nature of quantum mechanics and its application as resource for the tasks where the levels of trust at different parties are highly asymmetric. Here, we study the entanglement and EPR steering between two macroscopic magnons in a hybrid ferrimagnet—light system. In the absence of light, the two types of magnons on the two sublattices can be entangled, but no quantum steering occurs when they are damped with the same rates. In the presence of the cavity field, the entanglement can be significantly enhanced, and strong two-way asymmetric quantum steering appears between two magnons with equal dissipation. This is very different from the conventional protocols to produce asymmetric steering by imposing additional unbalanced losses or noises on the two parties at the cost of reducing steerability. The essential physics is well understood by the unbalanced population of acoustic and optical magnons under the cooling effect of cavity photons. Our finding may provide a novel platform to manipulate the quantum steering and the detection of bi-party steering provides a knob to probe the magnetic damping on each sublattice of a magnet.

中文翻译:

增强了磁振子之间的纠缠和非对称EPR转向

宏观系统中强纠缠和爱因斯坦-波多尔斯基-罗森(EPR)转向的产生和操纵是现代物理学中的突出挑战。尤其是,非对称EPR操纵的观察对于其在解释量子力学性质方面的基本作用及其作为资源的应用都是非常重要的,其中在不同各方之间的信任级别都是高度非对称的。在这里,我们研究混合亚铁磁光系统中两个宏观磁振子之间的纠缠和EPR转向。在没有光照的情况下,两个子晶格上的两种类型的磁振子可以纠缠在一起,但是当它们以相同的速率阻尼时,不会发生量子转向。在存在腔场的情况下,纠缠可以大大增强,在具有相同耗散的两个磁振子之间出现了强大的双向非对称量子转向。这与通过在两侧上施加额外的不平衡损耗或噪声,以降低操纵性为代价而产生不对称操纵的传统协议非常不同。在腔光子的冷却作用下,声学和光学磁振子的不平衡分布很好地理解了基本物理学。我们的发现可能为操纵量子转向提供了一个新颖的平台,而对双方向转向的检测提供了一个旋钮,用于探测磁体每个子晶格上的磁阻尼。这与通过在两侧上施加额外的不平衡损耗或噪声,以降低操纵性为代价而产生不对称操纵的传统协议非常不同。在腔光子的冷却作用下,声学和光学磁振子的不平衡分布很好地理解了基本物理学。我们的发现可能为操纵量子转向提供了一个新颖的平台,而双向操纵的检测为旋钮提供了一个探测磁铁每个子晶格上的磁阻尼的旋钮。这与通过在两侧上施加额外的不平衡损耗或噪声,以降低操纵性为代价而产生不对称操纵的传统协议非常不同。在腔光子的冷却作用下,声学和光学磁振子的不平衡分布很好地理解了基本物理学。我们的发现可能为操纵量子转向提供了一个新颖的平台,而对双方向转向的检测提供了一个旋钮,用于探测磁体每个子晶格上的磁阻尼。
更新日期:2020-08-20
down
wechat
bug