当前位置: X-MOL 学术Robot. Comput.-Integr. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design, modelling and validation of a novel extra slender continuum robot for in-situ inspection and repair in aeroengine
Robotics and Computer-Integrated Manufacturing ( IF 10.4 ) Pub Date : 2020-08-25 , DOI: 10.1016/j.rcim.2020.102054
Mingfeng Wang , Xin Dong , Weiming Ba , Abdelkhalick Mohammad , Dragos Axinte , Andy Norton

In-situ aeroengine maintenance works are highly beneficial as it can significantly reduce the current maintenance cycle which is extensive and costly due to the disassembly requirement of engines from aircraft. However, navigating in/out via inspection ports and performing multi-axis movements with end-effectors in constrained environments (e.g. combustion chamber) is fairly challenging. A novel extra-slender (diameter-to-length ratio < 0.02) dual-stage continuum robot (16 degree-of-freedom) is proposed to navigate in and out confined environments and perform required configuration shapes for repair operations. Firstly, the robot design presents several innovative mechatronic solutions: (i) dual-stage tendon-driven structure with bevelled disks to perform required shapes and to provide selective stiffness for carrying high payloads; (ii) various rigid-compliant combined joints to enable different flexibility and stiffness in each stage; (iii) three commanding cables for each 2-DoF section to minimise the number of actuators with precise actuation. Secondly, a segment-scaled piecewise-constant-curvature-theory based kinematic model and a Kirchhoff-elastic-rod-theory based static model are established by considering the applied forces/moments (friction, actuation, gravity and external load), where the friction coefficient is modelled as a function of bending angle. Finally, experiments were carried out to validate the proposed static modelling and to evaluate the robot capabilities of performing the predefined shape and stiffness.



中文翻译:

新型超细长连续体机器人的设计,建模和验证,用于航空发动机的现场检查和维修

现场航空发动机维修工作非常有利,因为它可以大大减少当前的维修周期,由于从飞机上拆卸发动机需要大量且昂贵的维修周期。但是,在受限的环境(例如燃烧室)中,通过检查端口进/出导航以及使用末端执行器执行多轴运动是相当困难的。提出了一种新颖的超细长(直径与长度之比<0.02)双阶段连续体机器人(16自由度),以在狭窄的环境中进出,并执行维修操作所需的配置形状。首先,机器人的设计提出了几种创新的机电一体化解决方案:(i)具有斜面盘的双级腱驱动结构,以执行所需的形状并为承载高载荷提供选择性的刚度;(ii)各种不同的刚性组合接头,以在每个阶段实现不同的柔韧性和刚度;(iii)每个2自由度部分使用三根指令电缆,以最大程度地减少执行精确控制的执行器数量。其次,通过考虑作用力/力矩(摩擦力,作动力,重力和外力),建立基于分段比例的分段恒定曲率理论的运动学模型和基于基尔霍夫弹性杆理论的静态模型。摩擦系数被建模为弯曲角度的函数。最后,进行了实验,以验证所提出的静态建模并评估机器人执行预定形状和刚度的能力。(iii)每个2自由度部分使用三根指令电缆,以最大程度地减少执行精确控制的执行器数量。其次,通过考虑作用力/力矩(摩擦力,作动力,重力和外力),建立基于分段比例的分段恒定曲率理论的运动学模型和基于基尔霍夫弹性杆理论的静态模型。摩擦系数被建模为弯曲角度的函数。最后,进行了实验,以验证所提出的静态建模并评估机器人执行预定形状和刚度的能力。(iii)每个2自由度部分使用三根指令电缆,以最大程度地减少执行精确控制的执行器数量。其次,通过考虑作用力/力矩(摩擦力,作动力,重力和外力),建立基于分段比例的分段恒定曲率理论的运动学模型和基于基尔霍夫弹性杆理论的静态模型。摩擦系数被建模为弯曲角度的函数。最后,进行了实验,以验证所提出的静态建模并评估机器人执行预定形状和刚度的能力。通过考虑作用力/力矩(摩擦力,作动力,重力和外载荷),建立了基于分段比例的分段恒定曲率理论的运动学模型和基于基尔霍夫弹性杆理论的静态模型。被建模为弯曲角度的函数。最后,进行了实验,以验证所提出的静态建模并评估机器人执行预定形状和刚度的能力。通过考虑作用力/力矩(摩擦力,作动力,重力和外载荷),建立了基于分段比例的分段恒定曲率理论的运动学模型和基于基尔霍夫弹性杆理论的静态模型。被建模为弯曲角度的函数。最后,进行了实验,以验证所提出的静态建模并评估机器人执行预定形状和刚度的能力。

更新日期:2020-08-25
down
wechat
bug