当前位置: X-MOL 学术Int. J. Refrig. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental measurement and modelling of vapor-liquid equilibrium for 3,3,3- Trifluoropropene (R1243zf) and trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)) binary system
International Journal of Refrigeration ( IF 3.5 ) Pub Date : 2020-08-25 , DOI: 10.1016/j.ijrefrig.2020.08.016
Zhiqiang Yang , Alain Valtz , Christophe Coquelet , Jiangtao Wu , Jian Lu

The environmental performance becomes the critical factor of the selection of refrigerant. 3,3,3-trifluoropropene (R1243zf) and trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) are environmental friendly candidates to replace R134a. Whereas, in the consideration of environmental factor, safety, and energetic efficiency at the same time, none of the pure refrigerants has been proved to be a suitable solution. Mixed refrigerants provide an approach to this problem because the characteristics of refrigerant blends can be optimized for particular applications in the way pure component refrigerant alone cannot be. The purpose of this work is to explore an R1243zf/R1234ze(E) blend which can be possibly used as a long-term alternative to replace hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons (HCFCs). We report the measurements of saturated vapor pressures of R1234ze(E) and R1243zf ranging from 273.17 to 353.13 K, and isothermal vapor-liquid equilibrium of R1243zf + R1234ze(E) systems from 283.15 to 323.14 K. The measurements are performed by static-analytic type apparatus coupled with two electromagnetic capillary samplers (ROLSI®, patent of Armines). The experimental data are correlated by the Peng-Robinson (PR) equation of state (EoS) associated with Mathias-Copeman (MC) alpha function and classical mixing rules. For the comparison of conventional mixing rules and excess free energy (GE) mixing rules models, classic van der Waals one fluid mixing rules and modified Huron-Vidal second-order (MHV2) mixing rules are employed respectively to the correlation of experimental VLE data. The modeling results are in good agreement with the measured data, while the PRMC-MHV2 model exhibits better performance in VLE prediction.



中文翻译:

3,3,3-三氟丙烯(R1243zf)和反式1,3,3,3-四氟丙烯(R1234ze(E))二元体系的气液平衡实验测量和建模

环境性能成为选择制冷剂的关键因素。3,3,3-三氟丙烯(R1243zf)和反式1,3,3,3-四氟丙烯(R1234ze(E))是替代R134a的环保候选材料。然而,同时考虑到环境因素,安全性和能量效率,没有一种纯制冷剂被证明是合适的解决方案。混合制冷剂提供了解决此问题的方法,因为可以通过单独的制冷剂无法做到的方式,针对特定应用优化制冷剂混合物的特性。这项工作的目的是探索一种R1243zf / R1234ze(E)混合物,该混合物可以长期替代氢氟碳化合物(HFC)和氢氯氟烃(HCFC)。我们报告了R1234ze(E)和R1243zf的饱和蒸气压的测量范围为273.17至353.13 K,以及R1243zf + R1234ze(E)系统的等温气液平衡范围为283.15至323.14K。这些测量是通过静态分析进行的类型的设备与两个电磁毛细管采样器结合使用(ROLSI®,Armines专利)。实验数据通过与Mathias-Copeman(MC)α函数和经典混合规则关联的Peng-Robinson(PR)状态方程(EoS)进行关联。为了比较常规混合规则和多余的自由能(通过与两个电磁毛细管采样器(ROLSI®,Armines的专利)结合的静态分析型设备进行测量。实验数据通过与Mathias-Copeman(MC)α函数和经典混合规则关联的Peng-Robinson(PR)状态方程(EoS)进行关联。为了比较常规混合规则和多余的自由能(通过与两个电磁毛细管采样器(ROLSI®,Armines的专利)结合的静态分析型设备进行测量。实验数据通过与Mathias-Copeman(MC)α函数和经典混合规则关联的Peng-Robinson(PR)状态方程(EoS)进行关联。为了比较常规混合规则和多余的自由能(G E)混合规则模型,经典范德华一流体混合规则和修正的Huron-Vidal二阶(MHV2)混合规则分别用于实验VLE数据的相关性。建模结果与实测数据吻合良好,而PRMC-MHV2模型在VLE预测中表现出更好的性能。

更新日期:2020-10-11
down
wechat
bug