当前位置: X-MOL 学术Adv. Nonlinear Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiple solutions for critical Choquard-Kirchhoff type equations
Advances in Nonlinear Analysis ( IF 4.2 ) Pub Date : 2020-08-22 , DOI: 10.1515/anona-2020-0119
Sihua Liang 1, 2 , Patrizia Pucci 3 , Binlin Zhang 4
Affiliation  

Abstract In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents, −a+b∫RN|∇u|2dxΔu=αk(x)|u|q−2u+β∫RN|u(y)|2μ∗|x−y|μdy|u|2μ∗−2u,x∈RN, $$\begin{array}{} \displaystyle -\left(a + b\int\limits_{\mathbb{R}^N} |\nabla u|^2 dx\right){\it\Delta} u = \alpha k(x)|u|^{q-2}u + \beta\left(\,\,\displaystyle\int\limits_{\mathbb{R}^N}\frac{|u(y)|^{2^*_{\mu}}}{|x-y|^{\mu}}dy\right)|u|^{2^*_{\mu}-2}u, \quad x \in \mathbb{R}^N, \end{array}$$ where a > 0, b ≥ 0, 0 < μ < N, N ≥ 3, α and β are positive real parameters, 2μ∗=(2N−μ)/(N−2) $\begin{array}{} 2^*_{\mu} = (2N-\mu)/(N-2) \end{array}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality, k ∈ Lr(ℝN), with r = 2∗/(2∗ − q) if 1 < q < 2* and r = ∞ if q ≥ 2∗. According to the different range of q, we discuss the multiplicity of solutions to the above equation, using variational methods under suitable conditions. In order to overcome the lack of compactness, we appeal to the concentration compactness principle in the Choquard-type setting.

中文翻译:

临界 Choquard-Kirchhoff 型方程的多重解

根据q的不同范围,我们在合适的条件下使用变分方法讨论上述方程的解的多重性。为了克服紧凑性的不足,我们在 Choquard 型设置中采用了集中紧凑性原则。
更新日期:2020-08-22
down
wechat
bug