当前位置: X-MOL 学术Adv. Mater. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication and Magnetic Actuation of 3D‐Microprinted Multifunctional Hybrid Microstructures
Advanced Materials Technologies ( IF 6.4 ) Pub Date : 2020-08-23 , DOI: 10.1002/admt.202000535
Victor Vieille 1, 2 , Roxane Pétrot 1, 2 , Olivier Stéphan 3 , Guillaume Delattre 3 , Florence Marchi 1 , Marc Verdier 4 , Orphée Cugat 2 , Thibaut Devillers 1
Affiliation  

Only achievable with two photons’ polymerization, 3D printing at the micrometer scale is essential for the fabrication of complex objects such as photonic components, deformable microstructures, or microscaffolds for biological cells. Integrating magnetic materials inside those structures has made their remote actuation with an external magnetic field possible. However, the nature of the magnetic material, its volume, and precise position in the structure are keys for the efficiency, dexterity, and compatibility with optical or biological functions. Herein, an original approach consisting in the bonding of discrete and fully magnetic microbeads to unaffected 3D‐microprinted structures is presented. Implemented in combination with the fine control of optical and mechanical properties allowed by the careful design of the 3D architecture, it is applied to the fabrication of the first remotely tunable biconvex microlens (focal length of 18 µm). Combined with the additional precise positioning and magnetic orientation of multiple microbeads, the presented technique enables the fabrication of complex actuators such as a 100 µm microtweezer that can be translated, rotated, and opened with a single variable external magnetic field. The dexterity of this untethered micromanipulator is demonstrated through a pick‐and‐place operation of 40 µm objects in a confined environment.

中文翻译:

3D微打印多功能混合微结构的制造和磁驱动

微米级的3D打印是只有通过两个光子的聚合才能实现的,对于制造复杂的物体(例如光子组件,可变形的微结构或生物细胞的微支架)至关重要。将磁性材料整合到这些结构内部,使得利用外部磁场进行远程驱动成为可能。然而,磁性材料的性质,其体积以及在结构中的精确位置是效率,灵巧性以及与光学或生物功能相容性的关键。在此,提出了一种原始方法,该方法包括将离散的和完全磁化的微珠粘结到不受影响的3D微打印结构上。结合精心设计的3D架构,可以实现对光学和机械性能的精细控制,它被用于制造第一个远程可调双凸微透镜(焦距为18 µm)。结合多个微珠的额外精确定位和磁性方向,该技术可以制造复杂的执行器,例如100 µm微镊子,可以通过单个可变外部磁场进行平移,旋转和打开。通过在密闭环境中对40 µm物体进行拾取和放置操作,证明了这种不受束缚的微型操纵器的灵活性。旋转,并在单个可变外部磁场作用下打开。通过在密闭环境中对40 µm物体进行拾取和放置操作,证明了这种不受束缚的微型操纵器的灵活性。旋转,并在单个可变外部磁场作用下打开。通过在密闭环境中对40 µm物体进行拾取和放置操作,证明了这种不受束缚的微型操纵器的灵活性。
更新日期:2020-10-12
down
wechat
bug