当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spike root oblique jet effect on drag and heat load reduction performance for hypersonic vehicles
Acta Astronautica ( IF 3.1 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.actaastro.2020.08.023
Kun Ma , Yingkun Li , Liang Zhu , Xiong Chen , Changsheng Zhou

Abstract How to effectively reduce aeroheating load and drag is an important issue in the engineering application of the hypersonic vehicles. In this paper, a novel combined aerodisk-spike root oblique jet strategy has been proposed for drag and heat reduction. The Reynolds-averaged Navier Stokes equations are solved based on the finite volume method, and the shear stress transport turbulence model is used. The reliability of the developed in-house codes has been verified systematically. The results demonstrate that the introduction of aerodisk and oblique jet makes the flow field change obviously, and this novel strategy gets an excellent effect on drag and heat reduction. Then the laws of pressure and Stanton number distributions have been studied in deep. Furthermore, the influences of spike length, oblique jet pressure ratio, and aerodisk diameter on the flow field, drag and heat reduction performance are investigated. Increasing the spike length-to-diameter and jet pressure ratio can enhance the performance of drag and heat reduction. The drag coefficient decreases by about 26% when the spike length-to-diameter increases from 0.5 to 3.0, and the total heat load can be decreased by 38.6% as the jet pressure ratio increases from 0.4 to 0.7. The larger aerodisk diameter can also get a better heat reduction performance. However, the increasing of aerodisk diameter makes the total drag rise sharply. The total drag coefficient increases by about 43% as the aerodisk diameter ratio varies from 0.18 to 0.48.

中文翻译:

尖峰根斜射流对高超声速飞行器减阻减热性能的影响

摘要 如何有效降低气动加热载荷和阻力是高超声速飞行器工程应用中的一个重要问题。在本文中,提出了一种新颖的气盘-穗根斜射流组合策略来减少阻力和热量。基于有限体积法求解雷诺平均纳维斯托克斯方程,采用剪应力输运湍流模型。开发的内部代码的可靠性已得到系统验证。结果表明,气盘和斜射流的引入使流场发生明显变化,这种新颖的策略在减阻和减热方面取得了很好的效果。然后深入研究了压力定律和斯坦顿数分布。此外,穗长、斜射流压力比、和风盘直径对流场、减阻和减热性能的研究。增加穗长径比和射流压力比可以提高减阻和减热性能。当穗长径比从0.5增加到3.0时,阻力系数降低约26%,随着射流压力比从0.4增加到0.7,总热负荷可降低38.6%。较大的风盘直径也可以获得更好的散热性能。然而,随着航盘直径的增加,总阻力急剧上升。当航盘直径比从 0.18 变化到 0.48 时,总阻力系数增加约 43%。增加穗长径比和射流压力比可以提高减阻和减热性能。当穗长径比从0.5增加到3.0时,阻力系数降低约26%,随着射流压力比从0.4增加到0.7,总热负荷可降低38.6%。较大的风盘直径也可以获得更好的散热性能。然而,随着航盘直径的增加,总阻力急剧上升。当航盘直径比从 0.18 变化到 0.48 时,总阻力系数增加约 43%。增加穗长径比和射流压力比可以提高减阻和减热性能。当穗长径比从0.5增加到3.0时,阻力系数降低约26%,随着射流压力比从0.4增加到0.7,总热负荷可降低38.6%。较大的风盘直径也可以获得更好的散热性能。然而,随着航盘直径的增加,总阻力急剧上升。当航盘直径比从 0.18 变化到 0.48 时,总阻力系数增加约 43%。较大的风盘直径也可以获得更好的散热性能。然而,随着航盘直径的增加,总阻力急剧上升。当航盘直径比从 0.18 变化到 0.48 时,总阻力系数增加约 43%。较大的风盘直径也可以获得更好的散热性能。然而,随着航盘直径的增加,总阻力急剧上升。当航盘直径比从 0.18 变化到 0.48 时,总阻力系数增加约 43%。
更新日期:2020-12-01
down
wechat
bug