当前位置: X-MOL 学术Dis. Model Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neuromuscular disease modeling on a chip.
Disease Models & Mechanisms ( IF 4.0 ) Pub Date : 2020-07-07 , DOI: 10.1242/dmm.044867
Jeffrey W Santoso 1 , Megan L McCain 2, 3
Affiliation  

Organs-on-chips are broadly defined as microfabricated surfaces or devices designed to engineer cells into microscale tissues with native-like features and then extract physiologically relevant readouts at scale. Because they are generally compatible with patient-derived cells, these technologies can address many of the human relevance limitations of animal models. As a result, organs-on-chips have emerged as a promising new paradigm for patient-specific disease modeling and drug development. Because neuromuscular diseases span a broad range of rare conditions with diverse etiology and complex pathophysiology, they have been especially challenging to model in animals and thus are well suited for organ-on-chip approaches. In this Review, we first briefly summarize the challenges in neuromuscular disease modeling with animal models. Next, we describe a variety of existing organ-on-chip approaches for neuromuscular tissues, including a survey of cell sources for both muscle and nerve, and two- and three-dimensional neuromuscular tissue-engineering techniques. Although researchers have made tremendous advances in modeling neuromuscular diseases on a chip, the remaining challenges in cell sourcing, cell maturity, tissue assembly and readout capabilities limit their integration into the drug development pipeline today. However, as the field advances, models of healthy and diseased neuromuscular tissues on a chip, coupled with animal models, have vast potential as complementary tools for modeling multiple aspects of neuromuscular diseases and identifying new therapeutic strategies.

中文翻译:

芯片上的神经肌肉疾病建模。

芯片上的器官被广泛定义为微制造表面或设备,旨在将细胞设计成具有类似天然特征的微尺度组织,然后大规模提取生理相关读数。由于它们通常与患者来源的细胞兼容,因此这些技术可以解决动物模型的许多人类相关限制。因此,芯片上的器官已成为患者特异性疾病建模和药物开发的一种有前途的新范例。由于神经肌肉疾病涵盖范围广泛的罕见疾病,具有不同的病因和复杂的病理生理学,因此在动物中建模尤其具有挑战性,因此非常适合芯片上的方法。在这篇综述中,我们首先简要总结了动物模型神经肌肉疾病建模的挑战。接下来,我们描述了神经肌肉组织的各种现有器官芯片方法,包括对肌肉和神经细胞来源的调查,以及二维和三维神经肌肉组织工程技术。尽管研究人员在芯片上模拟神经肌肉疾病方面取得了巨大进展,但细胞来源、细胞成熟度、组织组装和读出能力方面的剩余挑战限制了它们与当今药物开发管道的整合。然而,随着该领域的发展,芯片上的健康和患病神经肌肉组织模型与动物模型相结合,具有作为神经肌肉疾病多个方面建模和确定新治疗策略的补充工具的巨大潜力。包括对肌肉和神经细胞来源的调查,以及二维和三维神经肌肉组织工程技术。尽管研究人员在芯片上模拟神经肌肉疾病方面取得了巨大进展,但细胞来源、细胞成熟度、组织组装和读出能力方面的剩余挑战限制了它们与当今药物开发管道的整合。然而,随着该领域的发展,芯片上的健康和患病神经肌肉组织模型与动物模型相结合,具有作为神经肌肉疾病多个方面建模和确定新治疗策略的补充工具的巨大潜力。包括对肌肉和神经细胞来源的调查,以及二维和三维神经肌肉组织工程技术。尽管研究人员在芯片上模拟神经肌肉疾病方面取得了巨大进展,但细胞来源、细胞成熟度、组织组装和读出能力方面的剩余挑战限制了它们与当今药物开发管道的整合。然而,随着该领域的发展,芯片上的健康和患病神经肌肉组织模型与动物模型相结合,具有作为神经肌肉疾病多个方面建模和确定新治疗策略的补充工具的巨大潜力。尽管研究人员在芯片上模拟神经肌肉疾病方面取得了巨大进展,但细胞来源、细胞成熟度、组织组装和读出能力方面的剩余挑战限制了它们与当今药物开发管道的整合。然而,随着该领域的发展,芯片上的健康和患病神经肌肉组织模型与动物模型相结合,具有作为神经肌肉疾病多个方面建模和确定新治疗策略的补充工具的巨大潜力。尽管研究人员在芯片上模拟神经肌肉疾病方面取得了巨大进展,但细胞来源、细胞成熟度、组织组装和读出能力方面的剩余挑战限制了它们与当今药物开发管道的整合。然而,随着该领域的发展,芯片上的健康和患病神经肌肉组织模型与动物模型相结合,具有作为神经肌肉疾病多个方面建模和确定新治疗策略的补充工具的巨大潜力。
更新日期:2020-08-24
down
wechat
bug