当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction.
Nanoscale ( IF 5.8 ) Pub Date : 2020-08-21 , DOI: 10.1039/d0nr04336b
Jessica Scremin 1 , Isabella V Joviano Dos Santos , Jack P Hughes , Alejandro García-Miranda Ferrari , Enrique Valderrama , Wei Zheng , Xizhou Zhong , Xin Zhao , Elen J R Sartori , Robert D Crapnell , Samuel J Rowley-Neale , Craig E Banks
Affiliation  

We present the fabrication of platinum (Pt0) nanoparticle (ca. 3 nm average diameter) decorated vertically aligned graphene (VG) screen-printed electrodes (Pt/VG-SPE) and explore their physicochemical characteristics and electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media (0.5 M H2SO4). The Pt/VG-SPEs exhibit remarkable HER activity with an overpotential (recorded at −10 mA cm−2) and Tafel value of 47 mV (vs. RHE) and 27 mV dec−1. These values demonstrate the Pt/VG-SPEs as significantly more electrocatalytic than a bare/unmodified VG-SPE (789 mV (vs. RHE) and 97 mV dec−1). The uniform coverage of Pt0 nanoparticles (ca. 3 nm) upon the VG-SPE support results in a low loading of Pt0 nanoparticles (ca. 4 μg cm−2), yet yields comparable HER activity to optimal Pt based catalysts reported in the literature, with the advantages of being comparatively cheap, highly reproducible and tailorable platforms for HER catalysis. In order to test any potential dissolution of Pt0 from the Pt/VG-SPE surface, which is a key consideration for any HER catalyst, we additively manufactured (AM) a bespoke electrochemical flow cell that allowed for the electrolyte to be collected at regular intervals and analysed via inductively coupled plasma optical emission spectroscopy (ICP-OES). The AM electrochemical cell can be rapidly tailored to a plethora of geometries making it compatible with any size/shape of electrochemical platform. This work presents a novel and highly competitive HER platform and a novel AM technique for exploring the extent of Pt0 nanoparticle dissolution upon the electrode surface, making it an essential study for those seeking to test the stability/catalyst discharge of their given electrochemical platforms.

中文翻译:

铂纳米粒子装饰的垂直排列的石墨烯丝网印刷电极:电化学表征和氢释放反应的探索。

我们介绍铂(Pt 0)纳米粒子(平均直径3 nm)装饰的垂直排列的石墨烯(VG)丝网印刷电极(Pt / VG-SPE)的制造,并探讨其理化特性和对氢析出反应的电催化活性(HER)在酸性介质(0.5 MH 2 SO 4)中。Pt / VG-SPEs具有显着的HER活性,具有超电势(记录在-10 mA cm -2),Tafel值为47 mV(相对于RHE)和27 mV dec -1。这些值表明,Pt / VG-SPEs的电催化性能比裸/未改性的VG-SPE明显更高(789 mV(相对于RHE)和97 mV dec -1)。Pt组成的均匀覆盖0纳米颗粒(CA 3纳米)当在Pt中的低负荷的VG-SPE支持结果0纳米颗粒(CA 4微克厘米-2),但产率可比HER活性最佳的Pt基催化剂报道这些文献的优点是相对便宜,高度可复制和可定制的HER催化平台。为了测试Pt / VG-SPE表面上Pt 0的任何潜在溶解(这是任何HER催化剂的关键考虑因素),我们通过增材制造(AM)定制电化学流通池,可以定期收集电解质间隔并通过电感耦合等离子体发射光谱(ICP-OES)。AM电化学电池可根据多种几何形状快速定制,使其与任何尺寸/形状的电化学平台兼容。这项工作提出了一种新颖且竞争激烈的HER平台和一种新颖的AM技术,用于探索Pt 0纳米粒子在电极表面上的溶解程度,对于寻求测试其给定电化学平台的稳定性/催化剂放电的人员而言,这是一项必不可少的研究。
更新日期:2020-09-18
down
wechat
bug