当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiscale modelling reveals higher charge transport efficiencies of DNA relative to RNA independent of mechanism.
Nanoscale ( IF 6.7 ) Pub Date : 2020-08-21 , DOI: 10.1039/d0nr02382e
Abhishek Aggarwal 1 , Saientan Bag , Ravindra Venkatramani , Manish Jain , Prabal K Maiti
Affiliation  

In this study, we compare the charge transport properties of multiple double-stranded (ds)RNA sequences with corresponding dsDNA sequences. Recent studies have presented a contradictory picture of relative charge transport efficiencies in A-form DNA : RNA hybrids and dsDNA. Using a multiscale modelling framework, we compute conductance of dsDNA and dsRNA using Landauer formalism in the coherent limit and Marcus–Hush theory in the incoherent limit. We find that dsDNA conducts better than dsRNA in both the charge transport regimes. Our analysis shows that the structural differences in the twist angle and slide of dsDNA and dsRNA are the main reasons behind the higher conductance of dsDNA in the incoherent hopping regime. In the coherent limit however, for the same base pair length, the conductance of dsRNA is higher than that of dsDNA for the morphologies where dsRNA has a smaller end-to-end length relative to that of dsDNA.

中文翻译:

多尺度建模揭示了相对于RNA而言,DNA的电荷传输效率更高,而与机理无关。

在这项研究中,我们比较了多个双链(ds)RNA序列和相应的dsDNA序列的电荷传输特性。最近的研究提出了A型DNA:RNA杂种和dsDNA中相对电荷传输效率的矛盾图景。使用多尺度建模框架,我们使用相干极限内的Landauer形式主义和不相干极限内的Marcus-Hush理论来计算dsDNA和dsRNA的电导。我们发现在两种电荷传输机制中,dsDNA的行为均优于dsRNA。我们的分析表明,dsDNA和dsRNA的扭曲角和滑移的结构差异是在非相干跳跃方案中dsDNA较高电导的主要原因。但是,在相干极限中,对于相同的碱基对长度,
更新日期:2020-09-24
down
wechat
bug