当前位置: X-MOL 学术J. Compos. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Using OBR for pressure monitoring and BVID detection in type IV composite overwrapped pressure vessels
Journal of Composite Materials ( IF 2.9 ) Pub Date : 2020-08-20 , DOI: 10.1177/0021998320951616
G Souza 1 , JR Tarpani 1
Affiliation  

Type IV COPVs (Composite Overwrapped Pressure Vessels) are among the most suited structures for hydrogen storage. However, its complex modes of failure and requirement for periodic maintenance has led the industry to apply high safety factors on designs. This is one of the challenges inhibiting the widespread usage of the H2 in commercial vehicles. Structural health monitoring based on optical fibers is an emerging technology that can overcome these problems, as a neural network of sensors can be integrated to the structure during manufacturing and is readily accessible over the vessel lifetime. This gives information about the real structure condition, reducing overall maintenance costs. Here, core optical fibers were embedded in type IV COPVs during the manufacturing process and monitored with OBR (Optical Backscatter Reflectometer). Sensors were interrogated during an impact detection test and a pressurization test until burst failure. Fibers were capable of detecting the position and intensity of the damage in the first test and provided strain profiles over the entire length of the vessel for longitudinal and circumferential directions on the second. Optical microscopy of vessel sections showed matrix accumulation around the optical fiber as the main cause of sensor’s failure. During pressurization, steep peaks of strain in the dome regions from the early measurements indicated the burst failure site.

中文翻译:

使用 OBR 进行 IV 型复合外包装压力容器的压力监测和 BVID 检测

IV 型 COPV(复合外包裹压力容器)是最适合储氢的结构之一。然而,其复杂的故障模式和定期维护的要求导致行业在设计中应用高安全系数。这是阻碍 H2 在商用车中广泛使用的挑战之一。基于光纤的结构健康监测是一种可以克服这些问题的新兴技术,因为传感器的神经网络可以在制造过程中集成到结构中,并且在容器的整个生命周期内都可以轻松访问。这提供了有关真实结构状况的信息,从而降低了总体维护成本。在这里,芯光纤在制造过程中嵌入 IV 型 COPV 中,并使用 OBR(光学背向散射反射计)进行监控。在冲击检测测试和加压测试期间询问传感器直到爆裂失败。纤维能够在第一次测试中检测损伤的位置和强度,并在第二次测试中提供容器整个长度上纵向和圆周方向的应变分布。血管切片的光学显微镜显示,光纤周围的基质堆积是传感器失效的主要原因。在加压过程中,早期测量中圆顶区域的陡峭应变峰值表明了爆破失效位置。纤维能够在第一次测试中检测损伤的位置和强度,并在第二次测试中提供容器整个长度上纵向和圆周方向的应变分布。血管切片的光学显微镜显示,光纤周围的基质堆积是传感器失效的主要原因。在加压过程中,早期测量中圆顶区域的陡峭应变峰值表明了爆破失效位置。纤维能够在第一次测试中检测损伤的位置和强度,并在第二次测试中提供容器整个长度上纵向和圆周方向的应变分布。血管切片的光学显微镜显示,光纤周围的基质堆积是传感器失效的主要原因。在加压过程中,早期测量中圆顶区域的陡峭应变峰值表明了爆破失效位置。
更新日期:2020-08-20
down
wechat
bug