当前位置: X-MOL 学术Front. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission
Frontiers in Physics ( IF 3.1 ) Pub Date : 2020-07-15 , DOI: 10.3389/fphy.2020.00328
Muhammad Ramish Ashraf , Mahbubur Rahman , Rongxiao Zhang , Benjamin B. Williams , David J. Gladstone , Brian W. Pogue , Petr Bruza

While spatial dose conformity delivered to a target volume has been pushed to its practical limits with advanced treatment planning and delivery, investigations in novel temporal dose delivery are unfolding new mechanisms. Recent advances in ultra-high dose radiotherapy, abbreviated as FLASH, indicate the potential for reduction in healthy tissue damage while preserving tumor control. FLASH therapy relies on very high dose rate of > 40Gy/s with sub-second temporal beam modulation, taking a seemingly opposite direction from the conventional paradigm of fractionated therapy. FLASH brings unique challenges to dosimetry, beam control, and verification, as well as complexity of radiobiological effective dose through altered tissue response. In this review, we compare the dosimetric methods capable of operating under high dose rate environments. Due to excellent dose-rate independence, superior spatial (~ <1 mm) and temporal (~ns) resolution achievable with Cherenkov and scintillation-based detectors, we show that luminescent detectors have a key role to play in the development of FLASH, as the field rapidly progresses toward clinical adaptation. Additionally, we show that the unique ability of certain luminescence-based methods to provide tumor oxygenation maps in real-time with submillimeter resolution can elucidate the radiobiological mechanisms behind the FLASH effect. In particular, such techniques will be crucial for understanding the role of oxygen in mediating the FLASH effect.



中文翻译:

FLASH放射治疗的剂量测定:工具和放射发光与Cherenkov发射的作用的综述

尽管通过先进的治疗计划和交付方式将达到目标体积的空间剂量顺应性推到了其实际极限,但新型时间剂量交付方式的研究正在展现出新的机制。超高剂量放射疗法(缩写为FLASH)的最新进展表明,在保持肿瘤控制的同时,可以减少健康组织的损伤。FLASH疗法依赖于亚秒级瞬时光束调制的> 40Gy / s的极高剂量率,这似乎与传统的分级疗法范式相反。FLASH给剂量测定,光束控制和验证带来了独特的挑战,并且由于改变的组织反应而使放射生物学有效剂量变得复杂。在这篇综述中,我们比较了能够​​在高剂量率环境下运行的剂量学方法。由于Cherenkov和基于闪烁的探测器可实现出色的剂量率独立性,出色的空间(〜<1 mm)和时间(〜ns)分辨率,我们证明了发光探测器在FLASH的发展中起着关键作用,因为该领域迅速向临床适应发展。此外,我们表明某些基于发光的方法以亚毫米分辨率实时提供肿瘤氧合图的独特能力可以阐明FLASH效应背后的放射生物学机制。尤其是,此类技术对于了解氧气在介导FLASH效应中的作用至关重要。我们表明,随着该领域迅速向临床适应发展,发光检测器在FLASH的发展中起着关键作用。此外,我们表明某些基于发光的方法以亚毫米分辨率实时提供肿瘤氧合图的独特能力可以阐明FLASH效应背后的放射生物学机制。尤其是,此类技术对于理解氧气在介导FLASH效应中的作用至关重要。我们表明,随着该领域迅速向临床适应发展,发光检测器在FLASH的发展中起着关键作用。此外,我们表明某些基于发光的方法以亚毫米分辨率实时提供肿瘤氧合图的独特能力可以阐明FLASH效应背后的放射生物学机制。尤其是,此类技术对于理解氧气在介导FLASH效应中的作用至关重要。

更新日期:2020-08-21
down
wechat
bug