当前位置: X-MOL 学术J. Soc. Inf. Disp. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deformation‐induced stress/strain mapping and performance evaluation of a‐IGZO thin‐film transistors for flexible electronic applications
Journal of the Society for Information Display ( IF 2.3 ) Pub Date : 2020-08-21 , DOI: 10.1002/jsid.963
Taraprasanna Dash 1 , Eleena Mohapatra 1 , Chinmay K. Maiti 1
Affiliation  

In the flexible electronics sector, there is an urgent need for higher performance, and hence, many new technologies are emerging in recent years. The field of organic and printed electronics allows low production costs and large areas. The silicon technology allows nanometric resolutions and better performance. A new technology CAD (TCAD)‐based design methodology is needed to combine both mechanical flexibility and high performance. This work presents a predictive TCAD calibration methodology for indium‐gallium‐zinc‐oxide thin‐film transistors (TFTs), employing physics‐based modeling to support and enhance simulation‐based device development. In this work, based on the nonlinear finite element technique, a TCAD framework has been developed to introduce different types of large deformations and obtain the local stress/strain profiles (mapping) inside the devices. The impacts of various kinds of deformations on the electrical characteristics of the strained TFTs are studied. The feasibility (via predictions) for amorphous‐indium‐gallium‐zinc‐oxide (a‐IGZO) TFTs, combining considerable mechanical flexibility, high electrical performance, and finally, excellent stability under deformation, may be useful for mechanical deformation‐aware design and modeling for highly flexible electronics. To the best of our knowledge, the highest cutoff frequency (fT > 690 MHz) possible for strain‐engineered a‐IGZO TFTs is predicted in entirely flexible technologies that can be used to realize active transceivers operating in the MHz regime.

中文翻译:

挠性电子应用的a-IGZO薄膜晶体管的变形诱导应力/应变映射和性能评估

在柔性电子领域,迫切需要更高的性能,因此,近年来出现了许多新技术。有机和印刷电子领域允许较低的生产成本和较大的面积。硅技术可实现纳米分辨率和更好的性能。需要一种基于新技术CAD(TCAD)的设计方法,以兼具机械灵活性和高性能。这项工作提出了一种基于铟镓锌锌氧化物薄膜晶体管(TFT)的预测性TCAD校准方法,该方法采用基于物理学的建模来支持和增强基于仿真的器件开发。在这项工作中,基于非线性有限元技术,已经开发出一种TCAD框架,以引入不同类型的大变形并获得设备内部的局部应力/应变曲线(映射)。研究了各种变形对应变TFT的电学特性的影响。非晶铟镓锌氧化物(a-IGZO)TFT的可行性(通过预测),结合了相当大的机械柔韧性,高电性能,以及最终的变形稳定性,可能对感知机械变形的设计和制造很有帮助。高度灵活的电子产品建模。据我们所知,最高截止频率(非晶铟镓锌氧化物(a-IGZO)TFT的可行性(通过预测),结合了相当大的机械柔韧性,高电性能,以及最终的变形稳定性,可能对感知机械变形的设计和制造很有帮助。高度灵活的电子产品建模。据我们所知,最高截止频率(非晶铟镓锌氧化物(a-IGZO)TFT的可行性(通过预测),结合了相当大的机械柔韧性,高电性能,以及最终的变形稳定性,可能对感知机械变形的设计和制造很有帮助。高度灵活的电子产品建模。据我们所知,最高截止频率(f T > 690 MHz)可能是应变设计的a-IGZO TFT的完全灵活的技术,可用于实现以MHz方式工作的有源收发器。
更新日期:2020-08-21
down
wechat
bug