当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance assessment of a novel combined heating and power system based on transcritical CO2 power and heat pump cycles using geothermal energy
Energy Conversion and Management ( IF 10.4 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.enconman.2020.113355
Zhan Liu , Xuqing Yang , Xu Liu , Zhenzhu Yu , Yige chen

Abstract The combined heating and power technology is an encouraging measure to ameliorate energy utilization efficiency and meet the ever-growing heating and power demands in buildings. Meanwhile, transcritical CO2 cycles have been demonstrated to be powerful and ambitious competitors for exploitation of low-grade heat sources. In this paper, a novel geothermal driven cogeneration system is conceptually designed by coupling an ejector-expansion compression heat pump cycle into a transcritical CO2 Rankine cycle. The system can simultaneously supply power, hot water and hot air. The mathematical model is built from the thermodynamic and economic perspectives under reasonable assumptions. Parametric study is first performed to assess relationships between key physical parameters and system performance. Results indicate that turbine inlet pressure is optimized in research scope for the greatest exergy efficiency. Decreasing turbine outlet pressure and increasing evaporation temperature can raise exergy efficiency but induce negligible influence on thermal efficiency. The optimal turbine outlet pressure and evaporation temperature exist to cause the lowest total product unit cost. Finally, the Non-dominated Sorting Genetic Algorithms-II is employed to execute multi-objective optimization with targeting to maximize system efficiencies and minimize total product unit cost. In the final optimal operating condition, the optimization results suggest 122.88%, 37.17% and 23.53 $/GJ for thermal efficiency, exergy efficiency and total product unit cost, respectively.

中文翻译:

基于跨临界二氧化碳动力和使用地热能的热泵循环的新型热电联产系统的性能评估

摘要 热电联产技术是提高能源利用效率、满足建筑日益增长的热电需求的一项令人鼓舞的举措。同时,跨临界二氧化碳循环已被证明是开发低品位热源的强大而雄心勃勃的竞争对手。在本文中,通过将喷射器-膨胀压缩热泵循环耦合到跨临界 CO2 朗肯循环中,从概念上设计了一种新型地热驱动热电联产系统。该系统可同时提供电力、热水和热风。数学模型是在合理的假设下从热力学和经济角度建立的。首先进行参数研究以评估关键物理参数与系统性能之间的关系。结果表明,涡轮入口压力在研究范围内进行了优化,以获得最大的火用效率。降低涡轮出口压力和提高蒸发温度可以提高火用效率,但对热效率的影响可以忽略不计。最佳的涡轮出口压力和蒸发温度的存在使总产品单位成本最低。最后,采用非支配排序遗传算法-II 执行多目标优化,目标是最大化系统效率并最小化总产品单位成本。在最终的最佳运行条件下,优化结果表明热效率、火用效率和总产品单位成本分别为 122.88%、37.17% 和 23.53 $/GJ。降低涡轮出口压力和提高蒸发温度可以提高火用效率,但对热效率的影响可以忽略不计。最佳涡轮出口压力和蒸发温度的存在使总产品单位成本最低。最后,采用非支配排序遗传算法-II 执行多目标优化,目标是最大化系统效率并最小化总产品单位成本。在最终的最佳运行条件下,优化结果表明热效率、火用效率和总产品单位成本分别为 122.88%、37.17% 和 23.53 $/GJ。降低涡轮出口压力和提高蒸发温度可以提高火用效率,但对热效率的影响可以忽略不计。最佳涡轮出口压力和蒸发温度的存在使总产品单位成本最低。最后,采用非支配排序遗传算法-II 执行多目标优化,目标是最大化系统效率并最小化总产品单位成本。在最终的最佳运行条件下,优化结果表明热效率、火用效率和总产品单位成本分别为 122.88%、37.17% 和 23.53 $/GJ。最佳涡轮出口压力和蒸发温度的存在使总产品单位成本最低。最后,采用非支配排序遗传算法-II 执行多目标优化,目标是最大化系统效率并最小化总产品单位成本。在最终的最佳运行条件下,优化结果表明热效率、火用效率和总产品单位成本分别为 122.88%、37.17% 和 23.53 $/GJ。最佳涡轮出口压力和蒸发温度的存在使总产品单位成本最低。最后,采用非支配排序遗传算法-II 执行多目标优化,目标是最大化系统效率并最小化总产品单位成本。在最终的最佳运行条件下,优化结果表明热效率、火用效率和总产品单位成本分别为 122.88%、37.17% 和 23.53 $/GJ。
更新日期:2020-11-01
down
wechat
bug