当前位置: X-MOL 学术Appl. Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SnO2-Ag composites with high thermal cycling stability created by Ag infiltration of 3D ink-extruded SnO2 microlattices
Applied Materials Today ( IF 7.2 ) Pub Date : 2020-08-20 , DOI: 10.1016/j.apmt.2020.100794
Pengyu Chen , Christoph Kenel , Yaping Wang , David C. Dunand

SnO2-Ag composites with designed architectures with sub-millimeter feature sizes can provide enhanced functionality in electrical applications. SnO2-Ag composites consisting of a ceramic SnO2 micro-lattice filled with metallic Ag are created via a hybrid additive manufacturing method. The multistep process includes: (i) 3D extrusion printing of 0/90° cross-ply micro-lattices from SnO2-7%CuO nanoparticle-loaded ink; (ii) thermal treatment in air to burn the binders and sinter struts of the SnO2 micro-lattice to ~94% relative density; (iii) Ag melt infiltration of channels of sintered micro-lattices. Densification of the SnO2 struts during air-sintering is accelerated by CuO liquid phase forming at 1100°C. During the subsequent Ag infiltration, CuO acts as wetting agent between Ag and SnO2, with liquid Ag infiltrating the open channels of the SnO2 lattice and the micropores in the SnO2 struts left from incomplete sintering, thus forming a dense composite. Infiltration time and temperature influence the structure of the SnO2-Ag interface and the distribution of CuO within the Ag matrix. The resulting anisotropic electrical conductivity of the composite is controlled by the low-conductivity SnO2 architecture, as determined via finite element (FE) analysis. 3D ink-extruded and infiltrated SnO2-Ag composites show good structural stability and maintain high conductivity upon thermal shock cycles between 850 and 20°C. FE analysis reveals that thermal expansion/contraction mismatch stresses between the ceramic and metallic phases are mostly concentrated at the contact area between filaments in the SnO2 microlattices, and that plastic deformation accumulating in the soft Ag phase accommodates these mismatch stresses upon thermal cycling.



中文翻译:

Ag渗透3D油墨挤出的SnO 2微晶格产生的SnO 2 -Ag复合材料具有高的热循环稳定性

具有亚毫米特征尺寸的设计架构的SnO 2 -Ag复合材料可以在电气应用中提供增强的功能。通过混合增材制造方法创建由填充有金属银的陶瓷SnO 2微晶格组成的SnO 2 -Ag复合材料。该多步骤过程包括:(i)从装载有SnO 2 -7%CuO纳米颗粒的油墨中3D挤出印刷0/90°交叉层微晶格;(ii)在空气中进行热处理,以将SnO 2微晶格的粘合剂和烧结支杆燃烧至〜94%相对密度;(iii)Ag熔体渗透到烧结的微晶格的通道中。SnO 2的致密化通过在1100°C下形成CuO液相,加速了空气烧结过程中的支柱。在随后的Ag渗透过程中,CuO充当Ag和SnO 2之间的润湿剂,液态Ag渗透到SnO 2晶格的开放通道中,并且由于不完全烧结而残留在SnO 2支杆中的微孔,从而形成致密的复合材料。渗透时间和温度会影响SnO 2 -Ag界面的结构以及CuO在Ag基体内的分布。复合材料的各向异性导电率由低电导率SnO 2结构控制,这是通过有限元(FE)分析确定的。3D油墨挤出渗透SnO 2-Ag复合材料表现出良好的结构稳定性,并在850至20°C的热冲击循环中保持高导电性。有限元分析表明,陶瓷相和金属相之间的热膨胀/收缩失配应力主要集中在SnO 2微晶格中细丝之间的接触区域,并且在软银相中积累的塑性变形适应了热循环时的这些失配应力。

更新日期:2020-08-20
down
wechat
bug